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Definitions and notation

Recall the definition of a subgroup.

Definition
A subgroup of G is a subset H ⊆ G that is also a group. We denote this by H ≤ G .

Writing C2 ≤ D3 means there is a copy of C2 sitting inside of D3 as a subgroup.

We must be careful, because there might be multiple copies:

C2 ∼= 〈f 〉 = {1, f } ≤ D3, C2 ∼= 〈rf 〉 = {1, rf } ≤ D3.

Some books will write things like

Z3 ≤ D3 and C3 ≤ S3,

but we will try to avoid this, because Z3 6⊆ D3 and C3 6⊆ S3. Instead, we can write

Z3 ∼= 〈r〉 ≤ D3 and C3 ∼= 〈(123)〉 ≤ S3.

Remark
It is often prefered to express a subgroup by its generator(s).
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The two groups of order 4
Let’s start by considering the subgroup of the two groups of order 4.
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Proper subgroups of V4: 〈h〉 = {e, h}, 〈v〉 = {e, v}, 〈r〉 = {e, r}, 〈e〉 = {e}.

Subgroups of C4: 〈r〉 = {1, r , r2, r3} = 〈r3〉, 〈r2〉 = {1, r2}, 〈1〉 = {1}.

It is illustrative to arrange these in a subgroup lattice:
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The subgroup lattice of Z6

Consider the group Z6 = {0, 1, 2, 3, 4, 5}. Its subgroups are

〈0〉 = {0}, 〈1〉 = Z6 = 〈5〉, 〈2〉 = {0, 2, 4} = 〈4〉, 〈3〉 = {0, 3}.

Different choices of Cayley graphs can highlight different subgroups.
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Tip
It will be essential to learn the subgroup lattices of our standard examples of groups.
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The subgroup lattice of D3

Let’s construct the subgroup lattice of G = D3.

In any group G , every element g ∈ D3 generates a cyclic subgroup, 〈g〉 ≤ G .

For small groups like D3, these are the only proper subgroups.

Here are the non-trivial proper subgroups of D3:

〈r〉 = {1, r , r2} = 〈r2〉, 〈f 〉 = {1, f }, 〈rf 〉 = {1, rf }, 〈r2f 〉 = {1, r2f }, 〈1〉 = {1}.

Note that some subgroups are visually apparent in the Cayley graph and/or cycle graph,
whereas others aren’t.
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Intersections of subgroups

Proposition (exercise)

For any collection {Hα | α ∈ A} of subgroups of G , the intersection
⋂
α∈A

Hα is a subgroup.

Every subset S ⊆ G , not necessarily finite, generates a subgroup, denoted

〈S〉 =
{
se1
1 se2

2 · · · s
ek
k | si ∈ S, ei = {1,−1}

}
.

That is, 〈S〉 consists finite words built from elements in S and their inverses.

Proposition
For any S ⊆ G , the subgroup 〈S〉 is the intersection of all subgroups containing S:

〈S〉 =
⋂

S⊆Hα≤G

Hα ,

That is, the subgroup generated by S is the smallest subgroup containing S.

Think of the LHS as the subgroup built “from the bottom up”

Think of the RHS as the subgroup built “from the top down”

There are a number of mathematical objects that can be viewed in these two ways.
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The defining property of lattices
A lattice is a partially ordered set such that every pair of elements x , y has a unique:

supremum, or least upper bound, x∨y infimum, or greatest lower bound, x∧y .

Examples that we’re familiar with are subset lattices and divisor lattices.

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

x ∨ y = x ∪ y

x ∧ y = x ∩ y
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x ∨ y = lcm(x , y)

x ∧ y = gcd(x , y)

The intersection H ∩K of two subgroups is the largest subgroup contained in both of them.

Their union H ∪ K is not a subgroup (unless one contains the other). But it generates
〈H,K〉, the smallest subgroup containing both of them.

〈H,K〉

H K

H ∩ K

H ∨ K : “smallest subgroup above both H and K ”

H ∧ K : “ largest subgroup below both H and K ”
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Subgroups of cyclic groups

Proposition
Every subgroup of a cyclic group is cyclic.

Proof
Let H ≤ G = 〈x〉, and |H| > 1.

Note that H =
{
xk | k ∈ Z

}
. Let xk be the smallest positive power of x in H.

We’ll show that all elements of H have the form (xk )m = xkm for some m ∈ Z.

Take any other x ` ∈ H, with ` > 0.

Use the division algorithm to write ` = qk + r , for some remainder where 0 ≤ r < k.

We have x ` = xqk+r , and hence

x r = x `−qk = x `x−qk = x `(xk )−q ∈ H.

Minimality of k > 0 forces r = 0. �

Corollary

The subgroup of G = Z generated by a1, . . . , ak is
〈
gcd(a1, . . . , ak )

〉 ∼= Z. �
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Subgroups of cyclic groups

If d divides n, then 〈d〉 ≤ Zn has order n/d . Moreover, all cyclic subgroups have this form.

Corollary
The subgroups of Zn are of the form 〈d〉 for every divisor d of n. �

Z24=〈1〉
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The order of each subgroup can be read off from the divisor lattice of 24.
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A useful shortcut
Often, we’ll need to verify that some H ⊆ G is a subgroup. This requires checking

1. Identity: e ∈ H.

2. Inverses: If h ∈ H, then h−1 ∈ H.

3. Closure: If h1, h2 ∈ H, then h1h2 ∈ H.

There is a better way to check whether H is a subgroup.

One-step subgroup test
A subset H ⊆ G is a subgroup if and only if the following condition holds:

If x , y ∈ H, then xy−1 ∈ H.

Proof

“⇒”: Suppose H ≤ G , and pick h1, h2 ∈ H. Then h−12 ∈ H, and by closure, h1h−12 ∈ H. X

“⇐”: Suppose Eq. (1) holds, and take any h ∈ H.

Identity: Take x = y = h. By Eq. (1), xy−1 = hh−1 = e ∈ H. X

Inverses: Take x = e, y = h. By Eq. (1), xy−1 = eh−1 = h−1 ∈ H. X

Closure: Take x = h1 and y = h−12 . By Eq. (1),

xy−1 = h1(h−12 )−1 = h1h2 ∈ H. X
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