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The idea of cosets

By the regularity property of Cayley graphs, identical copies of the fragment that
corresponds to a subgroup appears throughout the graph.
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Of course, only one of these is actually a subgroup; the others don’t contain the identity.

These are called left cosets of H = (f).

Informal definition

To find the left coset xH in a Cayley graph, carry out the the following steps:
1. starting from the identity, follow a path to get to x (“follow the x-path”)
2. from x, follow all “H-paths”.

M. Macauley (Clemson) Lecture 3.3: Cosets Visual Algebra 2/15


mailto:macaule@clemson.edu

Cosets, formally

Definition
If H < G, then a left coset is a set
xH = {xh|heH},
for some fixed x € G called the representative. Similarly, we can define a right coset as

Hx = {hx | he H}.

Let's look at the right cosets of H = (f) in Da.
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Left vs. right cosets

m The left coset rH in Dy first traverse the r-path, then traverse all “H-paths".

m The right coset Hr in Dy: first traverse all H-paths, then traverse the r-path.
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rH=r{1,f}={r rf} =rf{f, 1} = rfH Hr = {1, f}r ={r, r3f} = {f, 1}r3f = Hr3f
Left cosets look like copies of the subgroup. Right cosets are usually scattered, because we

adopted the convention that arrows in a Cayley graph represent right multiplication.

Left and right cosets are generally different.

Key point J
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Left vs. right cosets
Definition
Let H < G. Given x € G, its left coset xH and right coset Hx are:

xH = {xh| h e H}, Hx = {hx | h € H}.
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Left vs. right cosets
Let's look at the left and right cosets of a different subgroup, N = (r).
m The left coset fN in Dy: first traferse the f-path, then traverse all “/N-paths”.

m The right coset Nf in D4: first traverse all N-paths, then traverse the f-path.

G

@

N = f{1,r,r? r3} = {f, fr, fr?, fr3} Nf ={1,r, 12, 3} = {f, rf, rf, r3f}
Remarks
m There are multiple representatives for the same coset:
N =rfN =r’fN=rfN,  Nf=Nrf = Nr’f = NF°f.

m For this subgroup, each left coset is a right coset. Such a subgroup is called normal.
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Basic properties of cosets

The following results should be “visually clear” from the Cayley graphs and regularity.

Proposition
Each (left) coset can have multiple representatives: if b € aH, then aH = bH.

Proof
Since b € aH, we can write b = ah, for some h € H. Thatis, h=a b and a = bh L.
To show that aH = bH, we need to verify both aH C bH and aH D bH.
“C": Take ah; € aH. We need to write it as bhy, for some hy € H. By substitution,
ahy = (bh™Y)hy = b(h™1hy) € bH.
“D": Pick bhs € bH. We need to write it as ahs for some hy € H. By substitution,
bhz = (ah)hs = a(hh3) € aH.

Therefore, aH = bH, as claimed. O

Corollary (boring but useful)

The equality xH = H holds if and only if x € H. (And analogously, for Hx = H.)

v
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Basic properties of cosets

Proposition
For any subgroup H < G, the (left) cosets of H partition the group G.

Proof

We know that the element g € G lies in a (left) coset of H, namely gH. Uniqueness follows

because if g € kH, then gH = kH. O
w

Proposition

All (left) cosets of H < G have the same size. O
.

Proof

It suffices to show that |xH| = |H|, for any x € H.

Define a map
¢: H— xH, h — xh.

It is elementary to show that this is a bijection. O
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Lagrange's theorem

Remark
For any subgroup H < G, the left cosets of H partition G into subsets of equal size.

The right cosets also partition G into subsets of equal size, but they may be different.

Let's compare these two partitions for the subgroup H = (f) of G = Dj.

H r®H rH 3H H Hr2
fo|r2f| f | r3 flfa2| i P | HeS
1 r? r | r3f 1 2 r fr Hr

Definition
The index of a subgroup H of G, written [G : H], is the number of distinct left (or
equivalently, right) cosets of H in G.

Lagrange's theorem
If H is a subgroup of finite group G, then |G| =[G : H] - |H]|. O

4
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The tower law

Proposition
Let G be a finite group and K < H < G be a chain of subgroups. Then

[G:K]=[G: H][H:K].

Here is a “proof by picture™

zH 7K 2K zzK znK
[G : H] = # of cosets of H in G
[H : K] = # of cosets of K in H
aH a K aK a3 K anK
[G : K] = # of cosets of K in G
H K | bk | hsk hnK
Proof
By Lagrange's theorem,
|G| |H _ |G|
G:H|[H:K]=+— "+ — = =[G : K]. O
[ Il | Al KK [ ]
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The tower law

Another way to visualize the tower law involves subgroup lattices.

It can be helpful to label the edge from H to K in a subgroup lattice with the index [H : K].

Index = 1 Dicg Order = 12

N
R
-
N
R
.
\
N
w

12 (1) 1

The tower law and subgroup lattices

For any two subgroups K < H of G, the index of K in H is just the products of the edge
labels of any path from H to K.
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Cosets in additive groups
In any abelian group, left cosets and right cosets coincide, because

xH={xh|heH}={hx|heH}=Hx
In abelian groups written additively, like Z, and Z, left cosets are written not as aH, but
a+H={a+h|heH}
For example, let G = Z. The cosets of the subgroup H = 4Z = {4k | k € Z} are

H=4{...,-12,-8,-4,0,4,8,12,...} = H
1+H={..,-11,-7,-3,1,5,9,13,...} = H+1
24+ H={..,-10,—6,-2,2,6,10,14,...} = H+2
3+H={...,-9,-5-1,3,7,11,15,...} = H+ 3.

Note that 3H would be interpreted to mean the subgroup 3(4Z) = 12Z.
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Equality of sets vs. equality of elements

Caveat! J

An equality of cosets xH = Hx as sets does not imply an equality of elements xh = hx.
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Proposition
If [G : H] = 2, then both left cosets of H are also right cosets. J
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The center of a group

Even though xH = Hx does not imply xh = hx for all h € H, the converse holds.

Even in a nonabelian group, there may be elements that commute with everything.
Definition
The center of G is the set

Z(G)={z€ G|gz=2zg9, Vg€ G}.

If z € Z(G), we say that z is central in G.

Examples

Let's think about what elements commute with everything in the following groups:

m Z(Dg) = (r?) = {1,r?} m Z(Frz;) = (v) = {1, v}
w Z(Ds) = {1}  Z(Ss) = {e}
m 2(Qs) = (-1) = {1,-1} n Z(As) = (e}

Clearly, if H < Z(G), then xH = Hx for all x € G.
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The center of a group

Proposition
For any group G, the center Z(G) is a subgroup.

Proof
m ldentity: eg = ge for all g € G. v

m Inverses: Take z € Z(G). For any g € G, we know that zg = gz.
Multipy this on the left and right by z=1:
gzt =z zg)z7t = z7Y(gz)z7t = z7 g,
Therefore, z7! € Z(G). v
m Closure: Suppose z1, 22 € Z(G). Then for any g € G,

(z122)9 = 21(229) = 21(922) = (219)22 = (921) 22 = 9(z122).

Therefore, z12, € Z(G). v
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