Visual Algebra

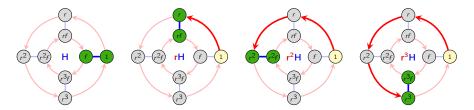
Lecture 3.3: Cosets

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

The idea of cosets

By the regularity property of Cayley graphs, identical copies of the fragment that corresponds to a subgroup appears throughout the graph.



Of course, only one of these is actually a subgroup; the others don't contain the identity. These are called left cosets of $H = \langle f \rangle$.

Informal definition

To find the left coset xH in a Cayley graph, carry out the the following steps:

- 1. starting from the identity, follow a path to get to x ("follow the x-path")
- 2. from x, follow all "H-paths".

Cosets, formally

Definition

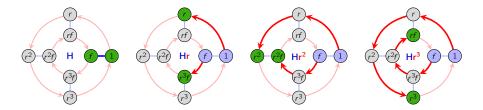
If $H \leq G$, then a left coset is a set

$$xH = \{xh \mid h \in H\},\$$

for some fixed $x \in G$ called the representative. Similarly, we can define a right coset as

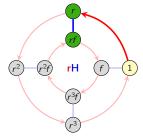
$$Hx = \{hx \mid h \in H\}.$$

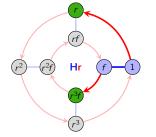
Let's look at the right cosets of $H = \langle f \rangle$ in D_4 .



Left vs. right cosets

- The left coset rH in D_4 : first traverse the r-path, then traverse all "H-paths".
- The right coset Hr in D_4 : first traverse all H-paths, then traverse the r-path.





 $rH = r\{1, f\} = \{r, rf\} = rf\{f, 1\} = rfH$ $Hr = \{1, f\}r = \{r, r^3f\} = \{f, 1\}r^3f = Hr^3f$

Left cosets look like copies of the subgroup. Right cosets are usually scattered, because we adopted the convention that arrows in a Cayley graph represent right multiplication.

Key point

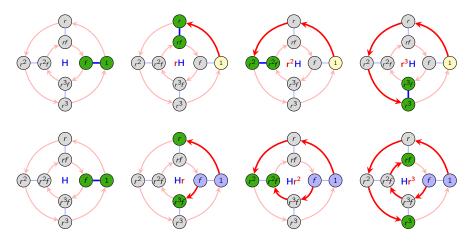
Left and right cosets are generally different.

Left vs. right cosets

Definition

Let $H \leq G$. Given $x \in G$, its left coset xH and right coset Hx are:

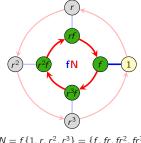
$$xH = \{xh \mid h \in H\}, \qquad Hx = \{hx \mid h \in H\}.$$

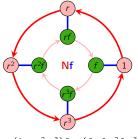


Left vs. right cosets

Let's look at the left and right cosets of a different subgroup, $N = \langle r \rangle$.

- The left coset f N in D₄: first traferse the f-path, then traverse all "N-paths".
- **The right coset** Nf in D_4 : first traverse all N-paths, then traverse the f-path.





Remarks

There are multiple representatives for the same coset:

$$fN = rfN = r^2 fN = r^3 fN, \qquad Nf = Nrf = Nr^2 f = Nr^3 f.$$

For this subgroup, each left coset is a right coset. Such a subgroup is called normal.

Basic properties of cosets

The following results should be "visually clear" from the Cayley graphs and regularity.

Proposition

Each (left) coset can have multiple representatives: if $b \in aH$, then aH = bH.

Proof

Since $b \in aH$, we can write b = ah, for some $h \in H$. That is, $h = a^{-1}b$ and $a = bh^{-1}$.

To show that aH = bH, we need to verify both $aH \subseteq bH$ and $aH \supseteq bH$.

"⊆": Take $ah_1 \in aH$. We need to write it as bh_2 , for some $h_2 \in H$. By substitution,

$$ah_1 = (bh^{-1})h_1 = b(h^{-1}h_1) \in bH.$$

" \supseteq ": Pick $bh_3 \in bH$. We need to write it as ah_4 for some $h_4 \in H$. By substitution,

$$bh_3 = (ah)h_3 = a(hh_3) \in aH.$$

Therefore, aH = bH, as claimed.

Corollary (boring but useful)

The equality xH = H holds if and only if $x \in H$. (And analogously, for Hx = H.)

M. Macauley (Clemson)

Basic properties of cosets

Proposition

For any subgroup $H \leq G$, the (left) cosets of H partition the group G.

Proof

We know that the element $g \in G$ lies in a (left) coset of H, namely gH. Uniqueness follows because if $g \in kH$, then gH = kH.

Proposition

All (left) cosets of $H \leq G$ have the same size.

Proof

It suffices to show that |xH| = |H|, for any $x \in H$.

Define a map

$$\phi \colon H \longrightarrow xH, \qquad h \longmapsto xh.$$

It is elementary to show that this is a bijection.

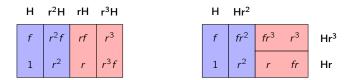
Lagrange's theorem

Remark

For any subgroup $H \leq G$, the left cosets of H partition G into subsets of equal size.

The right cosets also partition G into subsets of equal size, but they may be different.

Let's compare these two partitions for the subgroup $H = \langle f \rangle$ of $G = D_4$.



Definition

The index of a subgroup H of G, written [G : H], is the number of distinct left (or equivalently, right) cosets of H in G.

Lagrange's theorem

If H is a subgroup of finite group G, then $|G| = [G : H] \cdot |H|$.

The tower law

Proposition

Let G be a finite group and $K \leq H \leq G$ be a chain of subgroups. Then

[G:K] = [G:H][H:K].

Here is a "proof by picture":

[G:H] = # of cosets of H in G	zH	z ₁ K	z ₂ K	z ₃ K	 znK
		:	:	:	 :
[H:K] = # of cosets of K in H					
[G:K] = # of cosets of K in G	aH	a ₁ K	a ₂ K	a ₃ K	 a _n K
	н	к	h ₂ K	h ₃ K	 h _n K

Proof

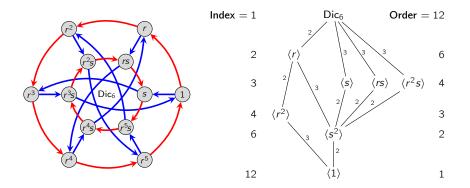
By Lagrange's theorem,

$$[G:H][H:K] = \frac{|G|}{|H|} \cdot \frac{|H|}{|K|} = \frac{|G|}{|K|} = [G:K].$$

The tower law

Another way to visualize the tower law involves subgroup lattices.

It can be helpful to label the edge from H to K in a subgroup lattice with the index [H : K].



The tower law and subgroup lattices

For any two subgroups $K \leq H$ of G, the index of K in H is just the *products of the edge labels* of any path from H to K.

Cosets in additive groups

In any abelian group, left cosets and right cosets coincide, because

$$xH = \left\{xh \mid h \in H\right\} = \left\{hx \mid h \in H\right\} = Hx.$$

In abelian groups written additively, like \mathbb{Z}_n and \mathbb{Z} , left cosets are written not as aH, but

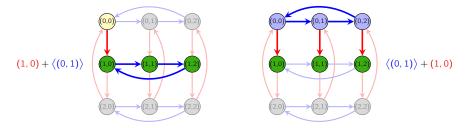
$$a+H=\big\{a+h\mid h\in H\big\}.$$

For example, let $G = \mathbb{Z}$. The cosets of the subgroup $H = 4\mathbb{Z} = \{4k \mid k \in \mathbb{Z}\}$ are

$$H = \{\dots, -12, -8, -4, 0, 4, 8, 12, \dots\} = H$$

1 + H = {\dots, -11, -7, -3, 1, 5, 9, 13, \dots} = H + 1
2 + H = {\dots, -10, -6, -2, 2, 6, 10, 14, \dots} = H + 2
3 + H = {\dots, -9, -5, -1, 3, 7, 11, 15, \dots} = H + 3.

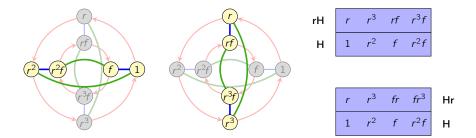
Note that 3*H* would be interpreted to mean the subgroup $3(4\mathbb{Z}) = 12\mathbb{Z}$.



Equality of sets vs. equality of elements

Caveat!

An equality of cosets xH = Hx as sets *does not* imply an equality of elements xh = hx.



Proposition

If [G: H] = 2, then both left cosets of H are also right cosets.

The center of a group

Even though xH = Hx does not imply xh = hx for all $h \in H$, the converse holds.

Even in a nonabelian group, there may be elements that commute with everything.

Definition

The center of G is the set

$$Z(G) = \{ z \in G \mid gz = zg, \forall g \in G \}.$$

If $z \in Z(G)$, we say that z is central in G.

Examples

Let's think about what elements commute with everything in the following groups:

 $Z(D_4) = \langle r^2 \rangle = \{1, r^2\}$ $Z(D_3) = \{1\}$ $Z(Q_8) = \langle -1 \rangle = \{1, -1\}$ $Z(D_4) = \{v\} = \{1, v\}$ $Z(S_4) = \{e\}$ $Z(A_4) = \{e\}$

Clearly, if $H \leq Z(G)$, then xH = Hx for all $x \in G$.

The center of a group

Proposition

For any group G, the center Z(G) is a subgroup.

Proof

- Identity: eg = ge for all $g \in G$.
- Inverses: Take $z \in Z(G)$. For any $g \in G$, we know that zg = gz.

Multipy this on the left and right by z^{-1} :

$$gz^{-1} = z^{-1}(zg)z^{-1} = z^{-1}(gz)z^{-1} = z^{-1}g.$$

Therefore, $z^{-1} \in Z(G)$.

Closure: Suppose $z_1, z_2 \in Z(G)$. Then for any $g \in G$,

$$(z_1z_2)g = z_1(z_2g) = z_1(gz_2) = (z_1g)z_2 = (gz_1)z_2 = g(z_1z_2).$$

Therefore, $z_1z_2 \in Z(G)$.

 \checkmark

 \checkmark