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The idea of cosets

By the regularity property of Cayley graphs, identical copies of the fragment that
corresponds to a subgroup appears throughout the graph.
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Of course, only one of these is actually a subgroup; the others don’t contain the identity.

These are called left cosets of H = 〈f 〉.

Informal definition
To find the left coset xH in a Cayley graph, carry out the the following steps:

1. starting from the identity, follow a path to get to x (“follow the x-path”)

2. from x , follow all “H-paths”.
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Cosets, formally

Definition
If H ≤ G , then a left coset is a set

xH =
{
xh | h ∈ H

}
,

for some fixed x ∈ G called the representative. Similarly, we can define a right coset as

Hx =
{
hx | h ∈ H

}
.

Let’s look at the right cosets of H = 〈f 〉 in D4.
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Left vs. right cosets

The left coset rH in D4: first traverse the r -path, then traverse all “H-paths”.

The right coset Hr in D4: first traverse all H-paths, then traverse the r -path.
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rH = r{1, f } = {r , rf } = rf {f , 1} = rfH
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Hr = {1, f }r = {r , r3f } = {f , 1}r3f = Hr3f

Left cosets look like copies of the subgroup. Right cosets are usually scattered, because we
adopted the convention that arrows in a Cayley graph represent right multiplication.

Key point
Left and right cosets are generally different.

M. Macauley (Clemson) Lecture 3.3: Cosets Visual Algebra 4 / 15

mailto:macaule@clemson.edu


Left vs. right cosets

Definition
Let H ≤ G . Given x ∈ G , its left coset xH and right coset Hx are:

xH =
{
xh | h ∈ H

}
, Hx =

{
hx | h ∈ H

}
.
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Left vs. right cosets
Let’s look at the left and right cosets of a different subgroup, N = 〈r〉.

The left coset f N in D4: first traferse the f -path, then traverse all “N-paths”.

The right coset Nf in D4: first traverse all N-paths, then traverse the f -path.
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fN = f {1, r , r2, r3} = {f , fr , fr2, fr3}
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Nf = {1, r , r2, r3}f = {f , rf , r2f , r3f }

Remarks
There are multiple representatives for the same coset:

fN = rfN = r2fN = r3fN, Nf = Nrf = Nr2f = Nr3f .

For this subgroup, each left coset is a right coset. Such a subgroup is called normal.
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Basic properties of cosets
The following results should be “visually clear” from the Cayley graphs and regularity.

Proposition
Each (left) coset can have multiple representatives: if b ∈ aH, then aH = bH.

Proof

Since b ∈ aH, we can write b = ah, for some h ∈ H. That is, h = a−1b and a = bh−1.

To show that aH = bH, we need to verify both aH ⊆ bH and aH ⊇ bH.

“⊆”: Take ah1 ∈ aH. We need to write it as bh2, for some h2 ∈ H. By substitution,

ah1 = (bh−1)h1 = b(h−1h1) ∈ bH.

“⊇”: Pick bh3 ∈ bH. We need to write it as ah4 for some h4 ∈ H. By substitution,

bh3 = (ah)h3 = a(hh3) ∈ aH.

Therefore, aH = bH, as claimed. �

Corollary (boring but useful)

The equality xH = H holds if and only if x ∈ H. (And analogously, for Hx = H.)
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Basic properties of cosets

Proposition
For any subgroup H ≤ G , the (left) cosets of H partition the group G .

Proof
We know that the element g ∈ G lies in a (left) coset of H, namely gH. Uniqueness follows
because if g ∈ kH, then gH = kH. �

Proposition
All (left) cosets of H ≤ G have the same size. �

Proof
It suffices to show that |xH| = |H|, for any x ∈ H.

Define a map
φ : H −! xH, h 7−! xh.

It is elementary to show that this is a bijection. �
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Lagrange’s theorem

Remark
For any subgroup H ≤ G , the left cosets of H partition G into subsets of equal size.

The right cosets also partition G into subsets of equal size, but they may be different.

Let’s compare these two partitions for the subgroup H = 〈f 〉 of G = D4.
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Definition
The index of a subgroup H of G , written [G : H], is the number of distinct left (or
equivalently, right) cosets of H in G .

Lagrange’s theorem
If H is a subgroup of finite group G , then |G | = [G : H] · |H|. �
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The tower law

Proposition
Let G be a finite group and K ≤ H ≤ G be a chain of subgroups. Then

[G : K ] = [G : H][H : K ].

Here is a “proof by picture”:

[G : H] = # of cosets of H in G

[H : K ] = # of cosets of K in H

[G : K ] = # of cosets of K in G

...
...

... . .
. ...
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z1K z2K z3K · · · znK

a1K a2K a3K · · · anK

K h2K h3K · · · hnK

Proof
By Lagrange’s theorem,

[G : H][H : K ] =
|G |
|H|
·
|H|
|K |

=
|G |
|K |

= [G : K ]. �
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The tower law
Another way to visualize the tower law involves subgroup lattices.

It can be helpful to label the edge from H to K in a subgroup lattice with the index [H : K ].
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The tower law and subgroup lattices
For any two subgroups K ≤ H of G , the index of K in H is just the products of the edge
labels of any path from H to K .
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Cosets in additive groups
In any abelian group, left cosets and right cosets coincide, because

xH =
{
xh | h ∈ H

}
=

{
hx | h ∈ H

}
= Hx .

In abelian groups written additively, like Zn and Z, left cosets are written not as aH, but

a + H =
{
a + h | h ∈ H

}
.

For example, let G = Z. The cosets of the subgroup H = 4Z = {4k | k ∈ Z} are

H = {. . . ,−12,−8,−4, 0, 4, 8, 12, . . . } = H

1+ H = {. . . ,−11,−7,−3, 1, 5, 9, 13, . . . } = H + 1

2+ H = {. . . ,−10,−6,−2, 2, 6, 10, 14, . . . } = H + 2

3+ H = {. . . ,−9,−5,−1, 3, 7, 11, 15, . . . } = H + 3.

Note that 3H would be interpreted to mean the subgroup 3(4Z) = 12Z.

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(1, 0) +
〈
(0, 1)

〉
(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

〈
(0, 1)

〉
+ (1, 0)
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Equality of sets vs. equality of elements

Caveat!
An equality of cosets xH = Hx as sets does not imply an equality of elements xh = hx .
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Proposition
If [G : H] = 2, then both left cosets of H are also right cosets.
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The center of a group

Even though xH = Hx does not imply xh = hx for all h ∈ H, the converse holds.

Even in a nonabelian group, there may be elements that commute with everything.

Definition
The center of G is the set

Z(G) =
{
z ∈ G | gz = zg, ∀g ∈ G

}
.

If z ∈ Z(G), we say that z is central in G .

Examples
Let’s think about what elements commute with everything in the following groups:

Z(D4) = 〈r2〉 = {1, r2}

Z(D3) = {1}

Z(Q8) = 〈−1〉 = {1,−1}

Z(Frz1) = 〈v〉 = {1, v}

Z(S4) = {e}

Z(A4) = {e}

Clearly, if H ≤ Z(G), then xH = Hx for all x ∈ G .
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The center of a group

Proposition
For any group G , the center Z(G) is a subgroup.

Proof
Identity: eg = ge for all g ∈ G . X

Inverses: Take z ∈ Z(G). For any g ∈ G , we know that zg = gz .

Multipy this on the left and right by z−1:

gz−1 = z−1(zg)z−1 = z−1(gz)z−1 = z−1g.

Therefore, z−1 ∈ Z(G). X

Closure: Suppose z1, z2 ∈ Z(G). Then for any g ∈ G ,

(z1z2)g = z1(z2g) = z1(gz2) = (z1g)z2 = (gz1)z2 = g(z1z2).

Therefore, z1z2 ∈ Z(G). X
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