Visual Algebra

Lecture 3.4: Normalizers and normal subgroups

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Paritions by left vs. right cosets

Given a subgroup H of G, it is natural to ask the following question:

"How many left cosets of H are right cosets?"

H g₂H	g₃H		g _n H
-------	-----	--	------------------

Partition of G by the left cosets of H

Partition of G by the right cosets of H

- "Best case" scenario: all of them
- "Worst case" scenario: only H
- In general: somewhere between these two extremes

Definition

A subgroup H is a normal subgroup of G if gH = Hg for all $g \in G$. We write $H \leq G$.

The normalizer of H, denoted $N_G(H)$, is the set of elements $g \in G$ such that gH = Hg:

$$N_G(H) = \big\{g \in G \mid gH = Hg\big\},\$$

i.e., the union of left cosets that are also right cosets.

Examples of normal sugroups

We've seen cases where we know a subgroup will be normal without having to check.

1. The subgroup H = G is always normal. The only left coset is also the only right coset:

$$eG = G = Ge.$$

2. The subgroup $H = \{e\}$ is always normal. The left and right cosets are singletons sets:

$$gH = \{g\} = Hg.$$

- 3. Subgroups H of index 2 are normal. The two cosets (left or right) are H and G H.
- 4. Subgroups of *abelian groups* are always normal, because for any $H \leq G$,

$$aH = \left\{ah \mid h \in H\right\} = \left\{ha \mid h \in H\right\} = Ha.$$

5. Subgroups $H \leq Z(G)$ are always normal, for the same reason as above.

Normalizers are subgroups

Theorem

For any $H \leq G$, we have $N_G(H) \leq G$.

Proof

- Identity: eH = He.
- **Inverses**: Suppose gH = Hg. Multiply on the left and right by g^{-1} :

$$Hg^{-1} = g^{-1}(gH)g^{-1} = g^{-1}(Hg)g^{-1} = g^{-1}H.$$

Closure: Suppose
$$g_1H = Hg_1$$
 and $g_2H = Hg_2$. Then

$$(g_1g_2)H = g_1(g_2H) = g_1(Hg_2) = (g_1H)g_2 = (Hg_1)g_2 = H(g_1g_2)$$

Corollary

Every subgroup is normal in its normalizer:

 $H \trianglelefteq N_G(H) \le G.$

Proof

By definition, gH = Hg for all $g \in N_G(H)$. Therefore, $H \leq N_G(H)$.

 \checkmark

 \checkmark

How to spot the normalizer in a Cayley graph

If we "collapse" G by the left cosets of H and disallow H-arrows, then $N_G(H)$ consists of the cosets that are reachable from H by a unique path.

We can get from H to rH multiple ways: via r or r^5 .

The only way to get from H to r^3H is via the path r^3 .

Remark

The normalizer of the subgroup $H = \langle f \rangle$ of D_n is

$$N_{D_n}(H) = \begin{cases} H \cup r^{n/2}H = \{1, f, r^{n/2}, r^{n/2}f\} & n \text{ even} \\ H = \{1, f\} & n \text{ odd.} \end{cases}$$

Conjugate subgroups

For a fixed element $g \in G$, the set

$$gHg^{-1} = \left\{ ghg^{-1} \mid h \in H \right\}$$

is called the conjugate of H by g.

Observation 1

For any $g \in G$, the conjugate gHg^{-1} is a subgroup of G.

Proof

- 1. Identity: $e = geg^{-1}$.
- 2. Closure: $(gh_1g^{-1})(gh_2g^{-1}) = gh_1h_2g^{-1}$.
- 3. Inverses: $(ghg^{-1})^{-1} = gh^{-1}g^{-1}$.

Observation 2

$$gh_1g^{-1} = gh_2g^{-1}$$
 if and only if $h_1 = h_2$.

Later, we'll prove that H and gHg^{-1} are isomorphic subgroups.

M. I	Macau	ley (CI	lemson	1

How to check if a subgroup is normal

If gH = Hg, then right-multiplying both sides by g^{-1} yields $gHg^{-1} = H$.

This gives us a new way to check whether a subgroup H is normal in G.

Useful remark

The following are equivalent to a subgroup $H \leq G$ being normal:

(i) $gH = Hg$ for all $g \in G$;	("left cosets are right cosets")
(ii) $gHg^{-1} = H$ for all $g \in G$;	("only one conjugate subgroup")
(iii) $ghg^{-1} \in H$ for all $h \in H$, $g \in G$.	("closed under conjugation")

Proof

 $(i) \Leftrightarrow (ii) \Rightarrow (iii)$ is trivial.

 $(iii) \Rightarrow (ii)$ is an exercise.

Sometimes, one of these is *much* easier than the others! For example:

- to show $H \not\leq G$, find one element $h \in H$ for which $ghg^{-1} \notin H$ for some $g \in G$.
- if G has a unique subgroup of size |H|, then H must be normal. (Why?)

A curious example

Useful remark

The following are equivalent to a subgroup $H \leq G$ being normal:

(i)
$$gH = Hg$$
 for all $g \in G$;("left cosets are right cosets")(ii) $gHg^{-1} = H$ for all $g \in G$;("only one conjugate subgroup")(iii) $ghg^{-1} \in H$ for all $h \in H$, $g \in G$.("closed under conjugation")

If G is infinite, then $gHg^{-1} \subsetneq H$ is possible, but only if $H \not \leq G$. (Why?)

In geometric group theory, the Baumslag-Solitar groups are defined by

$$\mathsf{BS}(m,n) = \langle a, b \mid ba^m b^{-1} = a^n \rangle \cong \left\langle \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \frac{n}{m} & 0 \\ 0 & 1 \end{bmatrix} \right\rangle.$$

Consider the group G = BS(1, 2):

$$G = \left\langle a, b \mid bab^{-1} = a^2 \right\rangle, \qquad H = \left\langle a \right\rangle.$$

Note that $bHb^{-1} = b\langle a\rangle b^{-1} = \langle bab^{-1}\rangle = \langle a^2\rangle \lneq \langle a\rangle = H$, so $H \not \leq G$.

The subgroup lattice of A_4

Going forward, we will consider the following three subgroups of A_4 :

$$N = \langle (12)(34), (13)(24) \rangle = \{e, (12)(34), (13)(24), (14)(23)\} \cong V_4$$

$$H = \langle (123) \rangle = \{e, (123), (132)\} \cong C_3$$

$$K = \langle (12)(34) \rangle = \{e, (12)(34)\} \cong C_2.$$

For each one, its normalizer lies between it and A_4 (inclusive) on the subgroup lattice.

Three subgroups of A_4

The normalizer of each subgroup consists of the elements in the blue left cosets.

Here, take a = (123), x = (12)(34), z = (13)(24), and b = (234).

(124)	(234)	(143)	(132)
(123)	(243)	(142)	(134)
е	(12)(34)	(13)(24)	(14)(23)

$$[A_4:N_{A_4}(N)]=1$$

"normal"

(124)	(234)	(143) (132)
(123)	(243)	(142) (134)
е	(12)(34)	(13)(24) (14)(23)

$$[A_4:N_{A_4}(K)]=3$$

"moderately unnormal"

(14)(23)	(142)	(143)
(13)(24)	(243)	(124)
(12)(34)	(134)	(234)
е	(123)	(132)

 $[A_4:N_{A_4}(H)]=4$ "fully unnormal"

M. Macauley (Clemson)

The degree of normality

Let $H \leq G$ have index $[G : H] = n < \infty$. Let's define a term that describes:

"the proportion of cosets that are blue"

Definition

Let $H \leq G$ with $[G:H] = n < \infty$. The degree of normality of H is

$$\mathsf{Deg}_{G}^{\triangleleft}(H) := \frac{|N_{G}(H)|}{|G|} = \frac{1}{[G:N_{G}(H)]} = \frac{\# \text{ elements } x \in G \text{ for which } xH = Hx}{\# \text{ elements } x \in G}$$

- If $\text{Deg}_G^{\triangleleft}(H) = 1$, then *H* is normal.
- If $\text{Deg}_G^{\triangleleft}(H) = \frac{1}{n}$, we'll say *H* is fully unnormal.
- If $\frac{1}{n} < \text{Deg}_{G}^{\triangleleft}(H) < 1$, we'll say H is moderately unnormal.

Big idea

The degree of normality measures how close to being normal a subgroup is.