Visual Algebra

Lecture 3.6: Conjugate subgroups

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Normal subgroups of order 2

Often, we can determine the normal subgroups and conjugacy classes simply from inspecting the subgroup lattice.

We'll make frequent use of the following straightforward result.

Lemma

A subgroup H of order 2 is normal if and only if it is contained in Z(G).

Proof

Let $H = \{e, h\}$.

" \Leftarrow ": We already know that subgroups contained in Z(G) are normal.

√

" \Rightarrow ": Suppose $H \subseteq G$. Then for all $x \in G$,

$$xH = x\{e, h\} = \{x, xh\}, \text{ and } Hx = \{e, h\}x = \{x, hx\}.$$

Since xH = Hx, we must have xh = hx, and hence $H \le Z(G)$.

√

Unicorn subgroups

Suppose we conjugate $G = D_4$ by some element $x \in D_4$.

Subgroups at a unique "lattice neighborhood" are called unicorns, and must be normal.

For example, $\langle r^2 \rangle = x \langle r^2 \rangle x^{-1}$ is the only size-2 subgroup "with 3 parents."

The groups G and $\langle 1 \rangle$ are always unicorns, and hence normal.

The index-2 subgroups $\langle r^2, f \rangle$, $\langle r \rangle$, and $\langle r^2, rf \rangle$ must be normal.

Remark

Conjugating a normal subgroup $N \leq G$ by $x \in G$ shuffles its elements and subgroups.

Conjugating normal subgroups

Proposition

If $H \le N \le G$, then $xHx^{-1} \le N$ for all $x \in G$.

Proof

Conjugating $H \le N$ by $x \in G$ yields $xHx^{-1} \le xNx^{-1} = N$.

Determining the conjugacy classes from the subgroup lattice

Suppose we conjugate $G = D_4$ by some element $x \in D_4$.

Conclusions

- All unicorns and index-2 subgroups are normal.
- $\blacksquare \langle f \rangle$ cannot be normal because $f \notin Z(D_4)$. Thus, it has some other conjugate.
- Each conjugate to $\langle f \rangle$ must be contained in $\langle r^2, f \rangle$. Therefore,

$$\operatorname{cl}_{D_4}(\langle f \rangle) = \{\langle f \rangle, \langle rf \rangle\} = \operatorname{cl}_{D_4}(\langle rf \rangle).$$

- The normalizer of $\langle f \rangle$ must have index 2, and thus $N_{D_4}(\langle f \rangle) = \langle r^2, f \rangle$.
- We just determined all conjugacy classes and normalizers simply by inspection!

Unicorns in the diquaternion group

Our definition of unicorn could be strengthened, but we want to keep things simple.

Are any of the C_4 subgroups of DQ₈ unicorns, i.e., "not like the others"?

What can we say about the conjugacy classes of the subgroups of DQ_8 just from the lattice?

A mystery group of order 16

Let's repeat a previous exercise, for this lattice of an actual group. Unicorns are purple.

We can deduce that every subgroup is normal, except possibly $\langle s \rangle$ and $\langle r^4 s \rangle$.

There are two cases:

- \blacksquare $\langle s \rangle$ and $\langle r^4 s \rangle$ are normal $\Rightarrow s \in Z(G) \Rightarrow G$ is abelian.
- $\langle s \rangle$ and $\langle r^4 s \rangle$ are not normal $\Rightarrow \operatorname{cl}_G(\langle s \rangle) = \{\langle s \rangle, \langle r^4 s \rangle\} \Rightarrow G$ is nonabelian.

This doesn't necessarily mean that both of these are actually possible...

A mystery group of order 16

It's straightforward to check that this is the subgroup lattice of

$$C_8 \times C_2 = \langle r, s \mid r^8 = s^2 = 1, srs = r \rangle.$$

Let r = (a, 1) and s = (1, b), and so $C_8 \times C_2 = \langle r, s \rangle = \langle (a, 1), (1, b) \rangle$.

A mystery group of order 16

However, the nonabelian case is possible as well! The following also works:

$$SA_8 = \langle r, s \mid r^8 = s^2 = 1, srs = r^5 \rangle.$$

Conjugate subgroups, algebraically

We understand how to compare gH and Hg both algebraically and in a Cayley graph.

But to understand H vs. gHg^{-1} , we need to compare gH to Hg^{-1} .

Proposition

If aH = bH, then $Ha^{-1} = Hb^{-1}$.

Proof

Using $x \in H \Leftrightarrow xH = H = Hx$, we deduce that

$$aH = bH \Leftrightarrow b^{-1}aH = H \Leftrightarrow H = Hb^{-1}a \Leftrightarrow Ha^{-1} = Hb^{-1}.$$

(Note that we're taking $x = b^{-1}a$ above.)

Conjugate subgroups, algebraically

We just showed that aH = bH implies $Ha^{-1} = Hb^{-1}$.

Corollary

If aH = bH, then $aHa^{-1} = bHb^{-1}$.

Proof

Since aH = bH we know that $Ha^{-1} = Hb^{-1}$, and so

$$aHa^{-1} = (aH)a^{-1} = (bH)a^{-1} = b(Ha^{-1}) = bHb^{-1}.$$

Corollary

For any subgroup $H \leq G$ of finite index, there are at most [G:H] conjugates of H.

In summary, we have

$$|\operatorname{cl}_G(H)| = [G : N_G(H)] \le [G : H].$$

We proved the inequality, but the equality remains unproven. (We'll wait for group actions.)

Conjugate subgroups, visually

Remark

To identify the conjugate subgroup gHg^{-1} in the Cayley graph, do the following:

- 1. Identify the left coset gH,
- 2. From each node in gH, traverse the g^{-1} -path.

Here is an example of this for the normal subgroup $A = \langle a \rangle$ of $G = C_4 \rtimes C_4$.

Let's check that $b^2Ab^{-2}=A$ and $b^3Ab^{-3}=A$, which means that $A \subseteq G$.

Conjugate subgroups, visually

Remark

To identify the conjugate subgroup gHg^{-1} in the Cayley graph, do the following:

- 1. Identify the left coset gH,
- 2. From each node in gH, traverse the g^{-1} -path.

Let's carry out the same steps with the nonnormal subgroup $A = \langle B \rangle$ of $G = C_4 \rtimes C_4$.

It follows immediately that B is not normal. Let's find all conjuguate subgroups. . .

Conjugate subgroups, visually

Remark

To identify the conjugate subgroup gHg^{-1} in the Cayley graph, do the following:

- 1. Identify the left coset gH,
- 2. From each node in gH, traverse the g^{-1} -path.

Let's carry out the same steps with the nonnormal subgroup $A = \langle B \rangle$ of $G = C_4 \rtimes C_4$.

We conclude that $cl_G(B) = \{B, aBa^{-1}\}.$

It follows that $[G:N_G(B)]=2$, i.e., $|N_G(B)|=8$. By inspection, $N_G(B)=B\cup a^2B$.

The subgroup lattice of $C_4 \times C_4$

Exercises

- Draw the subgroup lattice with the subgroups defined by generators.
- Determine the conjugacy classes of subgroups.
- Construct a cycle graph.