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Conjugate elements

We’ve seen how conjugation defines an equvalence relation on the set of subgroups of G .

The equivalence class containing H ≤ G is its conjugacy class, denoted clG (H).

We can also conjugate elements. Given h ∈ G , we may ask:

“which elements can be written as xhx−1 for some x ∈ G?”

Definition
The conjugacy class of an element h ∈ G is the set

clG (h) =
{
xhx−1 | x ∈ G

}
.

Proposition
The conjugacy class of h ∈ G has size 1 if and only if h ∈ Z(G).

Proof
Suppose | clG (h)| = 1. This means that

clG (h) = {h} ⇐⇒ xhx−1 = h, ∀x ∈ G ⇐⇒ xh = hx , ∀x ∈ G ⇐⇒ h ∈ Z(G) . �
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Conjugate elements

Lemma (exercise)
Conjugacy of elements is an equivalence relation.

Proof sketch
The following three properties need to be verified.

Reflexive: Each h ∈ G is conjugate to itself.

Symmetric: If g is conjugate to h, then h is conjugate to g.

Transitive: If g is conjugate to h, and h is conjugate to k, then g is conjugate to k.

As with any equivalence relation, the set is partitioned into equivalence classes.

The “class equation”
For any finite group G ,

|G | = |Z(G)|+
∑∣∣ clG (hi )∣∣,

where the sum is taken over distinct conjugacy classes of size greater than 1.
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Conjugate elements

Proposition
Every normal subgroup is the union of conjugacy classes.

Proof

If n ∈ N E G , then xnx−1 ∈ xNx−1 = N, and hence clG (n) ⊆ N. �

Let’s look at Q8, all of whose subgroups are normal.

Since i 6∈ Z(Q8) = {±1}, we know
∣∣ clQ8 (i)

∣∣ > 1.

Also, 〈i〉 = {±1,±i} is a union of conjugacy classes.

Therefore clQ8 (i) = {±i}.

Similarly, clQ8 (j) = {±j} and clQ8 (k) = {±k}.
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Conjugation preserves structure

Think back to linear algebra. Matrices A and B are similar (=conjugate) if A = PBP−1.

Conjugate matrices have the same eigenvalues, trace, and determinant.

In fact, they represent the same linear map, but under a change of basis.

Central theme in mathematics
Two things that are conjugate have the same structure.

Let’s start with a basic property preserved by conjugation.

Proposition
Conjugate elements in a group have the same order.

Proof

Consider h and g = xhx−1. Suppose |h| = n, then

gn = (xhx−1)n = (xhx−1)(xhx−1) · · · (xhx−1) = xhnx−1 = xex−1 = e.

Therefore, |g| = |xhx−1| ≤ |h|. Reversing roles of g and h gives |h| ≤ |g|. �
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Conjugation preserves structure

To understand what we mean by conjugation preserves structure, let’s revisit frieze groups.

Let h = h0 denote the reflection across the central axis, `0.

Suppose we want to reflect across a different axis, say `−2.
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It should be clear that all reflections (resp., rotations) of the “same parity” are conjugate.
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Conjugacy classes in Dn

The dihedral group Dn is a “finite version” of a previous frieze group.

When n is even, there are two “types of reflections” of an n-gon:

1. r2k f is across an axis that bisects two sides

2. r2k+1f is across an axis that goes through two corners.

Here is a visual reason why each of these two types form a conjugacy class in Dn.
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What do you think the conjugacy classes of a reflection is in Dn when n is odd?

Next, let’s verify the conjugacy classes algebraically.
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Conjugacy classes in D6

Let’s find the conjugacy classes of D6 algebraically.

The center is Z(D6) = {1, r3}; these are the only elements in size-1 conjugacy classes.

The only two elements of order 6 are r and r5, so clD6 (r) = {r , r5}.

The only two elements of order 3 are r2 and r4, so clD6 (r
2) = {r2, r4}.

For a reflection r i f , we need to consider two cases; conjugating by r j and by r j f :

r j (r i f )r−j = r j r i r j f = r i+2j f

(r j f )(r i f )(r j f )−1 = (r j f )(r i f )f r−j = r j fr i−j = r j r j−i f = r2j−i f .

Thus, r i f and rk f are conjugate iff i and k have the same parity.
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The subgroup lattice of D6

We can now deduce the conjugacy classes of the subgroups of D6.

D6
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The subgroup diagram of D6
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〈r〉 〈r2, f 〉 〈r2, rf 〉

〈r3, f 〉
×3

〈r2〉

〈r3〉 〈f 〉
×3

〈rf 〉
×3

〈1〉

1

r

r2

r3
r4

r5

f r2f r4f rf r3f r5f

D6

M. Macauley (Clemson) Lecture 3.9: Conjugate elements Visual Algebra 10 / 14

mailto:macaule@clemson.edu


Conjugacy classes in D5

Since n = 5 is odd, all reflections in D5 are conjugate.
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Cycle type and conjugacy in the symmetric group

We introduced cycle type in back in Chapter 2.

This is best seen by example. There are five cycle types in S4:

example element e (12) (234) (1234) (12)(34)
parity even odd even odd even
# elts 1 6 8 6 3

Definition
Two elements in Sn have the same cycle type if when written as a product of disjoint
cycles, there are the same number of length-k cycles for each k.

Theorem
Two elements g, h ∈ Sn are conjugate if and only if they have the same cycle type.

For example, permutations in S5 fall into seven cycle types (conjugacy classes):

cl(e), cl((12)), cl((123)), cl((1234)), cl((12345)), cl((12)(34)), cl((12)(345)).

Big idea
Conjugate permutations have the same structure: they are the same up to renumbering.
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Conjugation preserves structure in the symmetric group
The symmetric group G = S6 is generated by a transposition (i i + 1) and an n-cycle.

Consider the permutations of seating assignments around a circular table achievable by

(23): “people in chairs 2 and 3 may swap seats”

(123456): “people may cyclically rotate seats counterclockwise”

Here’s how to get people in chairs 1 and 2 to swap seats:

1

23

4

5 6

a

bc

d

e f

r = (123456)

(12) = r(23)r−1(12)
swap positions

1 and 2

1

23

4

5 6

ab

c

d e

f

(23)
swap positions

2 and 3

1

23

4

5 6

b

ac

d

e f

r = (123456)
1

23

4

5 6

a b

c

d e

f

M. Macauley (Clemson) Lecture 3.9: Conjugate elements Visual Algebra 13 / 14

mailto:macaule@clemson.edu


The subgroup lattice of S4

Exercise
Partition the subgroup lattice of S4 into conjugacy classes by inspection alone.
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