Visual Algebra

Lecture 3.9: Conjugate elements

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Conjugate elements

We've seen how conjugation defines an equvalence relation on the set of subgroups of *G*. The equivalence class containing $H \leq G$ is its conjugacy class, denoted $cl_G(H)$. We can also conjugate elements. Given $h \in G$, we may ask:

"which elements can be written as xhx^{-1} for some $x \in G$?"

Definition

The conjugacy class of an element $h \in G$ is the set

$$\mathsf{cl}_G(h) = \{xhx^{-1} \mid x \in G\}.$$

Proposition

The conjugacy class of $h \in G$ has size 1 if and only if $h \in Z(G)$.

Proof

Suppose $|cl_G(h)| = 1$. This means that

$$\mathsf{cl}_G(h) = \{h\} \iff xhx^{-1} = h, \ \forall x \in G \iff xh = hx, \ \forall x \in G \iff h \in Z(G).$$

Conjugate elements

Lemma (exercise)

Conjugacy of elements is an equivalence relation.

Proof sketch

The following three properties need to be verified.

- **Reflexive**: Each $h \in G$ is conjugate to itself.
- **Symmetric**: If *g* is conjugate to *h*, then *h* is conjugate to *g*.
- **Transitive**: If g is conjugate to h, and h is conjugate to k, then g is conjugate to k.

As with any equivalence relation, the set is partitioned into equivalence classes.

The "class equation"

For any finite group G,

$$|G| = |Z(G)| + \sum |\operatorname{cl}_G(h_i)|,$$

where the sum is taken over distinct conjugacy classes of size greater than 1.

Conjugate elements

Proposition

Every normal subgroup is the union of conjugacy classes.

Proof

If $n \in N \trianglelefteq G$, then $xnx^{-1} \in xNx^{-1} = N$, and hence $cl_G(n) \subseteq N$.

Let's look at Q_8 , all of whose subgroups are normal.

- Since $i \notin Z(Q_8) = \{\pm 1\}$, we know $|\operatorname{cl}_{Q_8}(i)| > 1$.
- Also, $\langle i \rangle = \{\pm 1, \pm i\}$ is a union of conjugacy classes.
- Therefore $cl_{Q_8}(i) = \{\pm i\}$.

Similarly, $cl_{Q_8}(j) = \{\pm j\}$ and $cl_{Q_8}(k) = \{\pm k\}$.

Conjugation preserves structure

Think back to linear algebra. Matrices A and B are similar (=conjugate) if $A = PBP^{-1}$.

Conjugate matrices have the same eigenvalues, trace, and determinant.

In fact, they represent the same linear map, but under a change of basis.

Central theme in mathematics

Two things that are conjugate have the same structure.

Let's start with a basic property preserved by conjugation.

Proposition

Conjugate elements in a group have the same order.

Proof

Consider *h* and $g = xhx^{-1}$. Suppose |h| = n, then

$$g^{n} = (xhx^{-1})^{n} = (xhx^{-1})(xhx^{-1})\cdots(xhx^{-1}) = xh^{n}x^{-1} = xex^{-1} = e.$$

Therefore, $|g| = |xhx^{-1}| \le |h|$. Reversing roles of g and h gives $|h| \le |g|$.

Conjugation preserves structure

To understand what we mean by conjugation preserves structure, let's revisit frieze groups.

Let $h = h_0$ denote the reflection across the central axis, ℓ_0 .

Suppose we want to reflect across a different axis, say ℓ_{-2} .

It should be clear that all reflections (resp., rotations) of the "same parity" are conjugate.

Conjugacy classes in D_n

The dihedral group D_n is a "finite version" of a previous frieze group.

When *n* is even, there are two "*types of reflections*" of an *n*-gon:

- 1. $r^{2k}f$ is across an axis that bisects two sides
- 2. $r^{2k+1}f$ is across an axis that goes through two corners.

Here is a visual reason why each of these two types form a conjugacy class in D_n .

What do you think the conjugacy classes of a reflection is in D_n when n is odd?

Next, let's verify the conjugacy classes algebraically.

M. Macauley (Clemson)

Conjugacy classes in D_6

Let's find the conjugacy classes of D_6 algebraically.

The center is $Z(D_6) = \{1, r^3\}$; these are the *only* elements in size-1 conjugacy classes. The only two elements of order 6 are r and r^5 , so $cl_{D_6}(r) = \{r, r^5\}$.

The only two elements of order 3 are r^2 and r^4 , so $cl_{D_6}(r^2) = \{r^2, r^4\}$.

For a reflection $r^i f$, we need to consider two cases; conjugating by r^j and by $r^j f$:

$$r^{j}(r^{i}f)r^{-j} = r^{j}r^{i}r^{j}f = r^{i+2j}f$$

•
$$(r^{j}f)(r^{j}f)(r^{j}f)^{-1} = (r^{j}f)(r^{j}f)fr^{-j} = r^{j}fr^{i-j} = r^{j}r^{j-i}f = r^{2j-i}f.$$

Thus, $r^i f$ and $r^k f$ are conjugate iff *i* and *k* have the same parity.

1	r	r ²	f	r²f	r ⁴ f
r ³	r ⁵	r ⁴	rf	r³f	r ⁵ f

The subgroup lattice of D_6

We can now deduce the conjugacy classes of the subgroups of D_6 .

The subgroup diagram of D_6

Conjugacy classes in D_5

Since n = 5 is odd, all reflections in D_5 are conjugate.

Cycle type and conjugacy in the symmetric group

We introduced cycle type in back in Chapter 2.

This is best seen by example. There are five cycle types in S_4 :

example element	е	(12)	(234)	(1234)	(12)(34)
parity	even	odd	even	odd	even
# elts	1	6	8	6	3

Definition

Two elements in S_n have the same cycle type if when written as a product of disjoint cycles, there are the same number of length-k cycles for each k.

Theorem

Two elements $g, h \in S_n$ are conjugate if and only if they have the same cycle type.

For example, permutations in S_5 fall into seven cycle types (conjugacy classes):

cl(e), cl((12)), cl((123)), cl((1234)), cl((12345)), cl((12)(34)), cl((12)(345)).

Big idea

Conjugate permutations have the same structure: they are *the same up to renumbering*.

Conjugation preserves structure in the symmetric group

The symmetric group $G = S_6$ is generated by a transposition (i i + 1) and an *n*-cycle.

Consider the permutations of seating assignments around a circular table achievable by

- (23): "people in chairs 2 and 3 may swap seats"
- (123456): "people may cyclically rotate seats counterclockwise"

Here's how to get people in chairs 1 and 2 to swap seats:

The subgroup lattice of S_4

Exercise

Partition the subgroup lattice of S_4 into conjugacy classes by inspection alone.

