Visual Algebra

Lecture 3.10: Centralizers

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

1/10

Theorem (Lecture 3.5)

For any subgroup $H \leq G$, the size of its conjugacy class is the index of its normalizer:

$$\big|\operatorname{cl}_G(H)\big|=[G:N_G(H)].$$

conjugating H by anything in this coset of $N_G(H)$...

 $[G:N_G(H)]$ cosets

... yields this conjugate subgroup

$$H$$
 aHa $^{-1}$ bHb $^{-1}$ \cdots zHz $^{-1}$ $|\operatorname{cl}_G(H)|$ subgroups

In this lecture, we'll see an analogue for **conjugacy classes of elements**.

Centralizers

Definition

The centralizer of a set $H \subseteq G$ is the set of elements that commute with everything in H:

$$C_G(H) = \{x \in G \mid xh = hx, \text{ for all } h \in H\} \leq G.$$

Usually, $H = \{h\}$ (not a group!), in which case we'll write $C_G(h)$.

Exercise: (i) $C_G(h)$ contains at least $\langle h \rangle$, (ii) if xh = hx, then $x\langle h \rangle \subseteq C_G(h)$.

Definition

Let $h \in G$ with $[G : \langle h \rangle] = n < \infty$. The degree of centrality of h is

$$\mathsf{Deg}_{G}^{C}(h) := \frac{|\mathit{C}_{G}(h)|}{|\mathit{G}|} = \frac{1}{[\mathit{G} : \mathit{C}_{G}(h)]} = \frac{\# \text{ elements } x \in \mathit{G} \text{ for which } xh = hx}{\# \text{ elements } x \in \mathit{G}}$$

- If $Deg_G^C(h) = 1$, then h is central.
- If $Deg_G^C(h) = \frac{1}{n}$, we'll say h is fully uncentral.
- If $\frac{1}{n} < \text{Deg}_{G}^{C}(h) < 1$, we'll say h is moderately uncentral.

Big idea

The degree of centrality measures how close to being central an element is.

An example: element conjugacy classes and centralizers in Dic₆

r ³ s	r ⁵ s
r^2s	r ⁴ s
r ²	r ⁴
r	r^5
	r ² s

conjugacy classes

r^2 r^5	r^2s r^5s
r r ⁴	rs r ⁴ s
1 r ³	s r³s

$$[G: C_G(r^3)] = 1$$
"central"

rs	r ³ s	r ⁵ s
s	r ² s	r ⁴ s
r	r ³	r ⁵
1	r ²	r ⁴

$$[G: C_G(r^2)] = 2$$
 "moderately uncentral"

$$r^{2}$$
 $r^{2}s$ r^{5} $r^{5}s$
 r $r^{5}s$
 r^{4} $r^{4}s$
 $r^{5}s$
 $r^{5}s$

$$[G: C_G(s)] = 3$$
 "fully unncentral"

An old example: subgroup conjugacy classes and normalizers in A_4

$$[A_4: N_{A_4}(N)] = 1$$

"normal"

(124)	(234)	(143) (132)
(123)	(243)	(142) (134)
е	(12)(34)	(13)(24) (14)(23)

 $[A_4: N_{A_4}(K)] = 3$ "moderately unnormal"

(14)(23)	(142)	(143)
(13)(24)	(243)	(124)
(12)(34)	(134)	(234)
е	(123)	(132)

 $[A_4: N_{A_4}(H)] = 4$ "fully unnormal"

The number of conjugate subgroups

Theorem

For any element $h \le G$, the size of its conjugacy class is the index of its centralizer:

$$\big|\operatorname{cl}_G(h)\big|=[G:C_G(h)].$$

conjugating h by anything in this coset of $C_G(h)$...

 $[G:C_G(h)]$ cosets

... yields this conjugate element

$$\begin{pmatrix}
h & aha^{-1} & bhb^{-1} & \cdots & zhz^{-1}
\end{pmatrix}$$

 $|\operatorname{cl}_G(h)|$ elements

The number of conjugate elements

Theorem (restated)

Let $h \in G$ with $[G : \langle h \rangle] = n < \infty$. Then

$$\left|\operatorname{cl}_G(h)\right| = [G:C_G(h)] = \frac{\# \text{ elts } x \in G}{\# \text{ elts } x \in G \text{ for which } xh = hx} = \frac{1}{\operatorname{Deg}_G^C(h)}.$$

That is, there are exactly $[G:C_G(h)]$ elements conjugate to h.

The number of conjugate subgroups

Theorem (Lecture 3.5)

Let $H \leq G$ with $[G:H] = n < \infty$. Then

$$\big|\operatorname{cl}_G(H)\big| = [G:N_G(H)] = \frac{\# \text{ elts } x \in G}{\# \text{ elts } x \in G \text{ for which } xH = Hx} = \frac{1}{\operatorname{Deg}_G^{\triangleleft}(H)}.$$

That is, H has exactly $[G:N_G(H)]$ conjugate subgroups.

 $|\operatorname{cl}_G(N)| = 1$

moderately unnormal

 $1 < |\operatorname{cl}_G(K)| < [G:K]$

fully unnormal

 $|\operatorname{cl}_G(H)| = [G:H]$; as large as possible

Conjugacy class size

Theorem (number of conjugate subgroups)

The conjugacy class of $H \leq G$ contains exactly $[G : N_G(H)]$ subgroups.

Proof (roadmap)

Construct a bijection between left cosets of $N_G(H)$ and conjugate subgroups of H:

" $xHx^{-1} = yHy^{-1}$ iff x and y are in the same left coset of $N_G(H)$."

Define $\phi \colon \{ \text{left cosets of } N_G(H) \} \longrightarrow \{ \text{conjugates of } H \}, \qquad \phi \colon xN_G(H) \longmapsto xHx^{-1}.$

Theorem (number of conjugate elements)

The conjugacy class of $h \in G$ contains exactly $[G : C_G(h)]$ elements.

Proof (roadmap)

Construct a bijection between left cosets of $C_G(h)$, and elements in $\operatorname{cl}_G(h)$:

" $xhx^{-1} = yhy^{-1}$ iff x and y are in the same left coset of $C_G(h)$."

Define ϕ : {left cosets of $C_G(h)$ } \longrightarrow {conjugates of h}, ϕ : $xC_G(h) \longmapsto xhx^{-1}$.

Conjugacy class summary: subgroups vs. elements

The relationship between conjugacy classes and cosets of a certain subgroup are analogous.

	conjugacy of subgroups	conjugacy of elements
objects	$H \leq G$	$h \in G$
conjugacy class	cl _G (H)	$cl_G(h)$
they partition	the subgroups of <i>G</i>	the elements of G
-izer subgroup	Normalizer $N_G(H)$	Centralizer $C_G(h)$
conj. class	[G: N _G (H)]	$[G:C_G(h)]$
"best case" (size-1 class)	$N_G(H) = G \text{ (iff } H \leq G)$	$C_G(h) = G \text{ (iff } h \in Z(G))$
"worst case" (max'l class)	$N_G(H) = H$; "fully unnormal"	$C_G(h) = \langle h \rangle$; "fully uncentral"

Both are special cases of the orbit-stabilizer theorem, from Chapter 5 (group actions).