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Homomorphisms

Throughout this course, we've said that two groups are isomorphic if for some generating
sets, they have Cayley graphs with the same structure.

This can be formalized by a “structure-preserving” function ¢: G — H between groups,
called a homomorphism.

An isomorphism is simply a bijective homomorphism.

What we called a re-wiring when constructing semidirect products is an automorphism: an
isomorphism ¢: G — G.

The Greek roots “homo" and “morph” together mean “same shape.”

The homomorphism ¢: G — H is an
m embedding if ¢ is one-to-one: “G is a subgroup of H."

m quotient map if ¢ is onto: “H is a quotient of G."

We'll see that even if ¢ is neither, it can be decomposed as a composition ¢ = L o 7 of
quotient followed by an embedding.
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Preview: embeddings vs. quotients

The difference between embeddings and quotient maps can be seen in the subgroup lattice:

AGLy (Zs) Dicio
Ds Cio
G G :
Cy Cy C\CG G

G 1 Cl

In one of these groups, Ds is subgroup. In the other, it arises as a quotient.

This, and much more, will be consequences of the celebrated isomorphism theorems.
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Preview: subgroups, quotients, and subquotients

Often, we'll see familiar subgroup lattices in the middle of a larger lattice.

These are called subquotients.

SLo(Z3) Aq
quotient of a subgroup

Qs Vs Qs
A ceee N esoe N
C Cy Gy G G G G G Gy
coaa |/ \/

@) 1 2

subgroup of a quotient
C G

The isomorphism theorems relates the structure of a group to that of its quotients and
subquotients.
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A example embedding

When we say Z3 < D3, we really mean that the structure of Zs appears in Ds.

This can be formalized by a map ¢: Zz — D3, defined by ¢: n+— r".

Zg D3
(© (O—®

Zs (r)
® Canny ® @ Cannan

@ & @ (0) (1)

In general, a homomorphism is a function ¢: G — H with some extra properties.
We will use standard function terminology:

m the group G is the domain

m the group H is the codomain

m the image is what is often called the range:

Im(¢) = ¢(G) = {#(g) | g € G}.
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The formal definition

Definition
A homomorphism is a function ¢: G — H between two groups satisfying

¢(ab) = ¢(a)o(b), foralla,be G.

Note that the operation a - b is in the domain while ¢(a) - ¢(b) in the codomain.
In this example, the homomorphism condition is ¢(a + b) = ¢(a) - ¢(b). (Why?)

Z3 Ds

(© (D—®

¢: Zs — Ds
. ® Cana» ® @
@ @ ©@

Not only is there a bijective correspondence between the elements in Z3 and those in the
subgroup (r) of D3, but the relationship between the corresponding nodes is the same.

k—r
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Homomorphisms

Remark

Not every function between groups is a homomorphism! The condition ¢(ab) = ¢(a)d(b)
means that the map ¢ preserves the structure of G.

The ¢(ab) = ¢(a)p(b) condition has visual interpretations on the level of Cayley graphs
and Cayley tables.

Domain Codomain

Cayley ® #(b)
graphs —_—
ab=c d(a)p(b)=¢(c)
b o(b)
Cayley a c ¢ (a) ¢(c)
tables

Note that in the Cayley graphs, b and ¢(b) are paths; they need not just be edges.
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An example
Consider the function ¢ that reduces an integer modulo 5:
¢:Z — Zs, ¢(n) =n (mod 5).
Since the group operation is additive, the “homomorphism property” becomes
¢(a+ b) = ¢(a) + d(b).

In plain English, this just says that one can “first add and then reduce modulo 5,” OR "first
reduce modulo 5 and then add.”

Domain: Z Codomain: Zs

Cayley

graphs L»
8 3
Cayley 19 27 ¢ 4 2
tables
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Homomorphisms and generators

Remark

If we know where a homomorphism maps the generators of G, we can determine where it
maps all elements of G.

For example, if ¢ : Zz — Zg is a homomorphism with ¢(1) = 4, we can deduce:

P2 =¢(1+1)=0(1) +¢(1) =4+4=2
?(0) = p(1+2) = p(1) + ¢(2) =4 +2 =0.

Example

Suppose that G = (a, b), and ¢: G — H, and we know ¢(a) and ¢(b). We can find the
image of any g € G. For example, for g = a3b?ab,

®(9) = d(aaabbab) = ¢(a) ¢(a) ¢(a) #(b) ¢(b) ¢(a) H(b).

Note that if k € N, then ¢(a¥) = ¢(a)k. What do you think ¢(a~1) is?
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Two basic properties of homomorphisms

Proposition
For any homomorphism ¢: G — H:

(i) ¢(1g) =1y “@ sends the identity to the identity’
(i) ¢(g71) =d(9)! “¢ sends inverses to inverses’
Proof

(i) Pick any g € G. Now, ¢(g) € H; observe that
#(16) d(9) = #(1c - 9) = ¢(9) = 11 - $(9).
Therefore, ¢(1g) = 14. v
(i) Take any g € G. Observe that
B(9)d(g™") = dl99™ ") = d(16) = 14

Since ¢(g)d(g~ 1) = 1y, it follows immediately that ¢(g~1) = ¢(g) 7. v

Corollary
If ¢ is a homomorphism, then ¢(g") = ¢(g)" for all n € Z.
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A word of caution

Just because a homomorphism ¢: G — H is determined by the image of its generators
does not mean that every such image will work.

For example, let’s try to define a homomorphism ¢: Z3 — Za4 by ¢(1) = 1. Then we get
?(2) =¢(1+1) =¢(1) + (1) =2,
?(0) =¢(1+1+1) = (1) + (1) + ¢(1) =3 # 0.

This is impossible, because ¢(0) must be 0 € Z4.

That's not to say that there isn't a homomorphism ¢: Z3 — Zg4; note that there is always
the trivial homomorphism between two groups:

¢$: G— H, ¢(g) =1y forallge G.

Exercise

Show that there is no embedding ¢: Z, < Z, for n > 2. That is, any such homomorphism
must satisfy ¢(1) = 0.
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