Visual Algebra Lecture 4.1: Homomorphisms Dr. Matthew Macauley School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/ ### Homomorphisms Throughout this course, we've said that two groups are isomorphic if for some generating sets, they have Cayley graphs with the same structure. This can be formalized by a "structure-preserving" function $\phi \colon G \to H$ between groups, called a homomorphism. An **isomorphism** is simply a bijective homomorphism. What we called a *re-wiring* when constructing semidirect products is an automorphism: an isomorphism $\phi \colon G \to G$. The Greek roots "homo" and "morph" together mean "same shape." The homomorphism $\phi \colon G \to H$ is an - \blacksquare embedding if ϕ is one-to-one: "G is a subgroup of H." - \blacksquare quotient map if ϕ is onto: "H is a quotient of G." We'll see that even if ϕ is neither, it can be decomposed as a *composition* $\phi = \iota \circ \pi$ of quotient followed by an embedding. # Preview: embeddings vs. quotients The difference between embeddings and quotient maps can be seen in the subgroup lattice: In one of these groups, D_5 is subgroup. In the other, it arises as a quotient. This, and much more, will be consequences of the celebrated isomorphism theorems. # Preview: subgroups, quotients, and subquotients Often, we'll see familiar subgroup lattices in the middle of a larger lattice. These are called **subquotients**. The *isomorphism theorems* relates the structure of a group to that of its quotients and subquotients. # A example embedding When we say $\mathbb{Z}_3 \leq D_3$, we really mean that the structure of \mathbb{Z}_3 appears in D_3 . This can be formalized by a map $\phi \colon \mathbb{Z}_3 \to D_3$, defined by $\phi \colon n \mapsto r^n$. In general, a homomorphism is a function $\phi \colon G \to H$ with some extra properties. We will use standard function terminology: - \blacksquare the group G is the domain - \blacksquare the group H is the codomain - the image is what is often called the *range*: $$Im(\phi) = \phi(G) = \{\phi(g) \mid g \in G\}.$$ #### The formal definition #### Definition A homomorphism is a function $\phi \colon G \to H$ between two groups satisfying $$\phi(ab) = \phi(a)\phi(b)$$, for all $a, b \in G$. Note that the operation $a \cdot b$ is in the domain while $\phi(a) \cdot \phi(b)$ in the codomain. In this example, the homomorphism condition is $\phi(a+b) = \phi(a) \cdot \phi(b)$. (Why?) Not only is there a bijective correspondence between the elements in \mathbb{Z}_3 and those in the subgroup $\langle r \rangle$ of D_3 , but the relationship between the corresponding nodes is the same. ### Homomorphisms #### Remark Not every function between groups is a homomorphism! The condition $\phi(ab) = \phi(a)\phi(b)$ means that the map ϕ preserves the structure of G. The $\phi(ab) = \phi(a)\phi(b)$ condition has visual interpretations on the level of Cayley graphs and Cayley tables. Note that in the Cayley graphs, b and $\phi(b)$ are paths; they need not just be edges. ### An example Consider the function ϕ that reduces an integer modulo 5: $$\phi \colon \mathbb{Z} \longrightarrow \mathbb{Z}_5$$, $\phi(n) = n \pmod{5}$. Since the group operation is additive, the "homomorphism property" becomes $$\phi(a+b) = \phi(a) + \phi(b).$$ In plain English, this just says that one can "first add and then reduce modulo 5," OR "first reduce modulo 5 and then add." # Homomorphisms and generators #### Remark If we know where a homomorphism maps the generators of G, we can determine where it maps all elements of G. For example, if $\phi: \mathbb{Z}_3 \to \mathbb{Z}_6$ is a homomorphism with $\phi(1) = 4$, we can deduce: $$\phi(2) = \phi(1+1) = \phi(1) + \phi(1) = 4+4=2$$ $$\phi(0) = \phi(1+2) = \phi(1) + \phi(2) = 4+2 = 0.$$ ### Example Suppose that $G = \langle a, b \rangle$, and $\phi \colon G \to H$, and we know $\phi(a)$ and $\phi(b)$. We can find the image of any $g \in G$. For example, for $g = a^3b^2ab$, $$\phi(g) = \phi(aaabbab) = \phi(a) \phi(a) \phi(b) \phi(b) \phi(b) \phi(b).$$ Note that if $k \in \mathbb{N}$, then $\phi(a^k) = \phi(a)^k$. What do you think $\phi(a^{-1})$ is? # Two basic properties of homomorphisms ### Proposition For any homomorphism $\phi \colon G \to H$: - (i) $\phi(1_G) = 1_H$ " ϕ sends the identity to the identity" - (ii) $\phi(g^{-1}) = \phi(g)^{-1}$ " ϕ sends inverses to inverses" #### Proof (i) Pick any $g \in G$. Now, $\phi(g) \in H$; observe that $$\phi(1_G)\,\phi(g)=\phi(1_G\cdot g)=\phi(g)=1_H\cdot\phi(g)\,.$$ Therefore, $\phi(1_G) = 1_H$. (ii) Take any $g \in G$. Observe that $$\phi(g) \phi(g^{-1}) = \phi(gg^{-1}) = \phi(1_G) = 1_H$$. Since $\phi(g)\phi(g^{-1})=1_H$, it follows immediately that $\phi(g^{-1})=\phi(g)^{-1}$. #### Corollary If ϕ is a homomorphism, then $\phi(g^n) = \phi(g)^n$ for all $n \in \mathbb{Z}$. #### A word of caution Just because a homomorphism $\phi\colon G\to H$ is determined by the image of its generators does *not* mean that every such image will work. For example, let's try to define a homomorphism $\phi \colon \mathbb{Z}_3 \to \mathbb{Z}_4$ by $\phi(1) = 1$. Then we get $$\phi(2) = \phi(1+1) = \phi(1) + \phi(1) = 2$$, $$\phi(0) = \phi(1+1+1) = \phi(1) + \phi(1) + \phi(1) = 3 \neq 0.$$ This is *impossible*, because $\phi(0)$ must be $0 \in \mathbb{Z}_4$. That's not to say that there isn't a homomorphism $\phi \colon \mathbb{Z}_3 \to \mathbb{Z}_4$; note that there is always the trivial homomorphism between two groups: $$\phi \colon G \longrightarrow H$$, $\phi(g) = 1_H$ for all $g \in G$. #### Exercise Show that there is no embedding $\phi \colon \mathbb{Z}_n \hookrightarrow \mathbb{Z}$, for $n \geq 2$. That is, *any* such homomorphism must satisfy $\phi(1) = 0$.