Visual Algebra

Lecture 4.3: The fundamental homomorphism theorem

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Every homomorphic image is a quotient

The following is one of the central results in group theory.

Fundamental homomorphism theorem (FHT)

If $\phi: G \to H$ is a homomorphism, then $G/\operatorname{Ker}(\phi) \cong \operatorname{Im}(\phi)$.

The FHT says that every homomorphism can be decomposed into two steps: (i) quotient out by the kernel, and then (ii) relabel the nodes via ϕ .

Visualizing the FHT via Cayley graphs

Visualizing the FHT via Cayley tables

Here's another way to think about the homomorphism

$$\phi: Q_8 \longrightarrow V_4, \qquad \phi(i) = v, \quad \phi(j) = h$$

as the composition of:

- a quotient by $N = \text{Ker}(\phi) = \langle -1 \rangle = \{\pm 1\},\$
- a relabeling map $\iota: Q_8/N \to V_4$.

Proof of the FHT

Fundamental homomorphism theorem

If ϕ : $G \to H$ is a homomorphism, then $\operatorname{Im}(\phi) \cong G/\operatorname{Ker}(\phi)$.

Proof

We'll construct an explicit map $\iota: G/\operatorname{Ker}(\phi) \longrightarrow \operatorname{Im}(\phi)$ and prove that it's an isomorphism. Let $N = \operatorname{Ker}(\phi)$, and recall that $G/N = \{gN \mid g \in G\}$. Define

 $\iota \colon G/N \longrightarrow \operatorname{Im}(\phi)$, $\iota \colon gN \longmapsto \phi(g)$.

• <u>Show ι is well-defined</u>: We must show that if aN = bN, then $\iota(aN) = \iota(bN)$.

$$aN = bN \implies b^{-1}aN = N \qquad (\text{left-multiply by } b^{-1})$$

$$\implies b^{-1}a \in N \qquad (xH = H \Leftrightarrow x \in H)$$

$$\implies \phi(b^{-1}a) = 1_H \qquad (\text{definition of Ker}(\phi))$$

$$\implies \phi(b)^{-1}\phi(a) = 1_H \qquad (\phi \text{ is a homom.})$$

$$\implies \phi(a) = \phi(b) \qquad (\text{left-multiply by } \phi(b))$$

$$\implies \iota(aN) = \iota(bN) \qquad (\text{by definition}) \qquad \checkmark$$

• <u>Show ι is injective (1–1)</u>: $[\iota(aN) = \iota(bN) \Rightarrow aN = bN.]$ Replace each \Longrightarrow with \iff . \checkmark

Proof of FHT (cont.) [Recall: $\iota: G/N \to \operatorname{Im}(\phi), \quad \iota: gN \mapsto \phi(g)$]

Proof (cont.)

• Show ι is a homomorphism: We must show that $\iota(aN \cdot bN) = \iota(aN) \iota(bN)$.

(aN · bN)	=	ι(abN)	$(aN \cdot bN := abN)$
	=	φ(<i>ab</i>)	(definition of ι)
	=	$\phi(a)\phi(b)$	$(\phi \text{ is a homomorphism})$
	=	ι(aN)ι(bN)	(definition of ι)

Thus, ι is a homomorphism.

• Show ι is surjective (onto):

Take any element in the codomain (here, $Im(\phi)$). We need to find an element in the domain (here, G/N) that gets mapped to it by ι .

Pick any $\phi(a) \in Im(\phi)$. By definition, $\iota(aN) = \phi(a)$, hence ι is surjective.

In summary, since $\iota: G/N \to \text{Im}(\phi)$ is a well-defined homomorphism that is injective (1–1) and surjective (onto), it is an isomorphism.

 \checkmark

 \checkmark

Consequences of the FHT

Corollary

If $\phi: G \to H$ is a homomorphism, then $\operatorname{Im} \phi \leq H$.

The two "extreme cases"

■ If ϕ : $G \hookrightarrow H$ is an embedding, then Ker $(\phi) = \{1_G\}$. The FHT says that

$$\operatorname{Im}(\phi) \cong G/\{1_G\} \cong G.$$

■ If ϕ : $G \to H$ is the trivial map $\phi(g) = 1_H$ for all $h \in G$, then Ker $(\phi) = G$. The FHT says that

$$\{1_H\} = \mathsf{Im}(\phi) \cong G/G.$$

Let's use the FHT to determine all homomorphisms $\phi \colon C_4 \to C_3$.

- By the FHT, $G/\operatorname{Ker} \phi \cong \operatorname{Im} \phi \leq C_3$, and so $|\operatorname{Im} \phi| = 1$ or 3.
- Since Ker $\phi \leq C_4$, Lagrange's Theorem also tells us that $|\text{Ker }\phi| \in \{1, 2, 4\}$, and hence $|\text{Im }\phi| = |G/\text{Ker }\phi| \in \{1, 2, 4\}$.

Thus, $|\operatorname{Im} \phi| = 1$, and so the *only* homomorphism $\phi: C_4 \to C_3$ is the trivial one.

Consequences of the FHT

Let's do a more complicated example: find all homomorphisms $\phi \colon \mathbb{Z}_{44} \to \mathbb{Z}_{16}.$ By the FHT,

$$\mathbb{Z}_{44}/\operatorname{\mathsf{Ker}}(\phi)\cong\operatorname{\mathsf{Im}}(\phi)\leq\mathbb{Z}_{16}.$$

This means that $44/|\operatorname{Ker}(\phi)|$ must be 1, 2, 4, 8, or 16.

Also, $|\text{Ker}(\phi)|$ must divide 44. We are left with three cases: $|\text{Ker}(\phi)| = 44$, 22, or 11.

Reminder

For each $d \mid n$, the group \mathbb{Z}_n has a unique subgroup of order d, which is $\langle n/d \rangle$.

- **Case 1**: $|\text{Ker}(\phi)| = 44$, which forces $|\text{Im}(\phi)| = 1$, and so $\phi(1) = 0$ is the trivial homomorphism.
- **Case 2**: $|\text{Ker}(\phi)| = 22$. By the FHT, $|\text{Im}(\phi)| = 2$, which means $\text{Im}(\phi) = \{0, 8\}$, and so $\phi(1) = 8$.
- Case 3: |Ker(φ)| = 11. By the FHT, |Im(φ)| = 4, which means Im(φ) = {0, 4, 8, 12}.
 There are two subcases: φ(1) = 4 or φ(1) = 12.

What does "well-defined" really mean?

Recall that we've seen the term "well-defined" arise in different contexts:

- **a** well-defined binary operation on a set G/N of cosets,
- **a** well-defined function $\iota: G/N \to H$ from a set (group) of cosets.

In both of these cases, well-defined means that:

"our definition doesn't depend on our choice of coset representative."

Formally:

If $N \trianglelefteq G$, then $aN \cdot bN := abN$ is a well-defined binary operation on the set G/N of cosets, because

if
$$a_1N = a_2N$$
 and $b_1N = b_2N$, then $a_1b_1N = a_2b_2N$.

The map $\iota: G/N \to H$, where $\iota(aN) = \phi(a)$, is a well-defined homomorphism, meaning that

if
$$aN = bN$$
, then $\iota(aN) = \iota(bN)$ (that is, $\phi(a) = \phi(b)$) holds.

Remark

Whenever we define a map and the domain is a quotient, we must show it's well-defined.

What does "well-defined" really mean?

In some sense, well-defined and injective are "dual" concepts:

- f is well-defined if the same input cannot map to different outputs
- *f* is injective if different inputs cannot map to the same output.

Let's revisit the proof of the FHT, and the map

 $\iota: G/N \to H$, $\iota(aN) = \phi(a)$, where $N = \text{Ker}(\phi)$.

Showing ι is well-defined is done as follows:

 $aN = bN \Rightarrow b^{-1}aN = N \Rightarrow b^{-1}a \in N \Rightarrow \phi(b^{-1}a) = 1 \Rightarrow \phi(a) = \phi(b) \Rightarrow \iota(aN) = \iota(bN).$ Reversing each \Rightarrow shows ι is 1-to-1.

How to show two groups are isomorphic

The standard way to show $G \cong H$ is to construct an isomorphism $\phi: G \to H$.

When the domain is a quotient, there is another method, due to the FHT.

Useful technique

Suppose we want to show that $G/N \cong H$. There are two approaches:

- (i) Define a map φ: G/N → H and prove that it is well-defined, a homomorphism, and a bijection.
- (ii) Define a map φ: G → H and prove that it is a homomorphism, a surjection (onto), and that Ker φ = N.

Usually, Method (ii) is easier. Showing well-definedness and injectivity can be tricky.

For example, Method (ii) works quite well in showing the following:

- $\blacksquare \mathbb{Z}/\langle n\rangle \cong \mathbb{Z}_n;$
- $\blacksquare \mathbb{Q}^*/\langle -1\rangle \cong \mathbb{Q}^+;$
- $AB/B \cong A/(A \cap B)$
- $G/(A \cap B) \cong (G/A) \times (G/B)$ (if G = AB).

A picture of the isomorphism $\iota \colon \mathbb{Z}/\langle 12 \rangle \longrightarrow \mathbb{Z}_{12}$ \mathbb{Z} $\phi = \iota \circ \pi$ \mathbb{Z}_{12} π 13 5 $\mathbb{Z}/\langle 12
angle$ 6 12 18 0

An example that is neither an embedding nor quotient

Consider the homomorphism $\phi \colon Q_8 \to A_4$ defined by

$$\phi(i) = (12)(34), \qquad \phi(j) = (13)(24).$$

Using the property of homomorphisms,

$$\phi(k) = \phi(ij) = \phi(i)\phi(j) = (12)(34) \cdot (13)(24) = (14)(23),$$

$$\phi(-1) = \phi(i^2) = \phi(i)^2 = ((12)(34))^2 = e,$$

and $\phi(-g) = \phi(g)$ for g = i, j, k.

An example that is neither an embedding nor quotient

Theorem (exercise)

Every homomorphism $\phi: G \to H$ can be factored as a quotient and embedding:

A generalization of the FHT

