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Summary of the isomorphism theorems

The isomorphism theorems
Fundamental homomorphism theorem: “All homomorphic images are quotients”

Correspondence theorem: Characterizes “subgroups of quotients”

Fraction theorem: Characterizes “quotients of quotients”

Diamond theorem: “Duality of subquotients.”
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Subquotients

The isomorphism theorems
Fundamental homomorphism theorem: “All homomorphic images are quotients”

Correspondence theorem: Characterizes “subgroups of quotients”

Fraction theorem: Characterizes “quotients of quotients”

Diamond theorem: “Duality of subquotients.”
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The diamond theorem: duality of subquotients

Diamond theorem
Suppose A,B ≤ G , and that A normalizes B. Then

(i) A ∩ B E A and B E AB.

(ii) The following quotient groups are isomorphic:

AB/B ∼= A/(A ∩ B)

G

AB

A B

A∩B

Proof (sketch)
Define the following map

φ : A −! AB/B , φ : a 7−! aB .If we can show:

1. φ is a homomorphism, 2. φ is surjective (onto), 3. Ker(φ) = A ∩ B,

then the result will follow immediately from the FHT. The details are left as an exercise.

Corollary

Let A,B ≤ G , with one of them normalizing the other. Then |AB| =
|A| · |B|
|A ∩ B|

.
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The diamond theorem: duality of subquotients

Let G = Z2 × Z6, and consider subgroups A = 〈(1, 0), (0, 3)〉, and B = 〈(0, 2)〉.

Then G = AB, and A ∩ B = 〈(0, 0)〉.

Let’s interpret the diamond theorem AB/B ∼= A/A ∩ B in terms of the subgroup lattice.

Z2 × Z6

〈(1, 2)〉 〈(1, 1)〉 〈(0, 1)〉

〈(1, 0), (0, 3)〉

〈(0, 2)〉

〈(1, 0)〉 〈(1, 3)〉 〈(0, 3)〉

〈(0, 0)〉
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The fact that the subgroup lattice of V4 is diamond shaped is coincidental.
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The diamond theorem: duality of subquotients
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The diamond theorem illustrated by a “pizza diagram”

The following analogy is due to Douglas Hofstadter:

B

A

a2Ba3B

a4B

anB

• 1

•a2•a3

•a4

•an

. . .

. . .

. . .

. . .

AB = large pizza

A = small pizza

B = large pizza slice

A ∩ B = small pizza slice

AB/B = {large pizza slices}

A/(A ∩ B) = {small pizza slices}

Diamond theorem: AB/B ∼= A/(A ∩ B)
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An application to permutation groups

Proposition
Suppose H is a subgroup of Sn that is not contained in An. Then exactly half of the
permutations in H are even.

Index = 1
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Proof
It suffices to show that [H : H ∩ An] = 2, or equivalently, that H/(H ∩ An) ∼= C2.

Since H � An, the product HAn must be strictly larger, and so HAn = Sn.

By the diamond theorem,

H/(H ∩ An) = HAn/An = Sn/An ∼= C2. �
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A theorem of Hans Zassenhaus

Butterfly lemma (see book for proof)
Let A,B be subgroups of a group, that contain M E A and N E B. Then

1. (A ∩ N)M E (A ∩ B)M,

2. (B ∩M)N E (A ∩ B)N,

3. The following quotient groups are isomorphic:

(A ∩ B)M
(A ∩ N)M

∼=
(A ∩ B)N
(B ∩M)N

.
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M N

(B ∩M)N(A ∩ N)M

A ∩ B

(A ∩ B)M (A ∩ B)N
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M N
(B ∩M)N(A ∩ N)M
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Commutators

We’ve seen how to divide Z by 〈12〉, thereby “forcing” all multiples of 12 to be zero. This is
one way to construct the integers modulo 12: Z12 ∼= Z/〈12〉.

Now, suppose G is nonabelian. We’d like to divide G by its “non-abelian parts,” making
them zero and leaving only “abelian parts” in the resulting quotient.

A commutator is an element of the form aba−1b−1. Since G is nonabelian, there are
non-identity commutators: aba−1b−1 6= e in G .

ab = ba ∗ ab 6= ba ∗

In this case, the set C := {aba−1b−1 | a, b ∈ G} contains more than the identity.

Definition
The commutator subgroup G ′ of G is

G ′ :=
〈
aba−1b−1 | a, b ∈ G

〉
.

The commutator subgroup is normal in G , and G/G ′ is abelian (exercise).
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The abelianization of a group

Definition
The abelianization of G is the quotient group G/G ′.

The commutator subgroup G ′ is the smallest normal subgroup N of G such that G/N is
abelian. [Note that G would be the “largest” such subgroup.]

Equivalently, the quotient G/G ′ is the largest abelian quotient of G . [Note that G/G ∼= 〈e〉
would be the “smallest” such quotient.]

Universal property of commutator subgroups
Suppose f : G ! A is a homomorphism to an abelian group A. Then there is a unique
homomorphism h : G/G ′ ! A such that f = h ◦ π:

G A

G/G ′

f

π h

We say that f “factors through” the abelianization, G/G ′.
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Some examples of abelianizations
By the isormophism theorems, we can usually identitfy the commutator subgroup G and
abelianation by inspection, from the subgroup lattice.

D4
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〈f 〉 〈r2f 〉 〈r2〉 〈r3f 〉 〈rf 〉
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Higher commutator subgroups
We can iterate the process of taking commutators.

We’ll study the successive subquotients G/G ′, G ′/G ′′, G ′′/G ′′′,. . . in Chapter 6.
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