Visual Algebra

Lecture 4.6: Subquotients

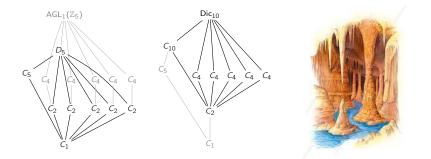
Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Summary of the isomorphism theorems

The isomorphism theorems

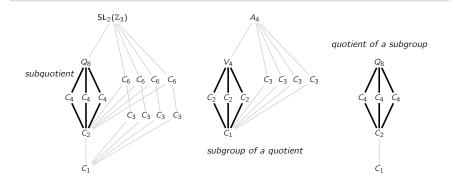
- **Fundamental homomorphism theorem:** "All homomorphic images are quotients"
- Correspondence theorem: Characterizes "subgroups of quotients"
- Fraction theorem: Characterizes "quotients of quotients"
- Diamond theorem: "Duality of subquotients."



Subquotients

The isomorphism theorems

- **Fundamental homomorphism theorem:** "All homomorphic images are quotients"
- Correspondence theorem: Characterizes "subgroups of quotients"
- Fraction theorem: Characterizes "quotients of quotients"
- Diamond theorem: "Duality of subquotients."



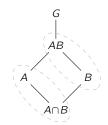
The diamond theorem: duality of subquotients

Diamond theorem

Suppose $A, B \leq G$, and that A normalizes B. Then

- (i) $A \cap B \trianglelefteq A$ and $B \trianglelefteq AB$.
- (ii) The following quotient groups are isomorphic:

 $AB/B \cong A/(A \cap B)$



Proof (sketch)

Define the following map

If we can show:

 $\phi \colon A \longrightarrow AB/B$, $\phi \colon a \longmapsto aB$.

1. ϕ is a homomorphism, 2. ϕ is surjective (onto), 3. $\text{Ker}(\phi) = A \cap B$,

then the result will follow immediately from the FHT. The details are left as an exercise.

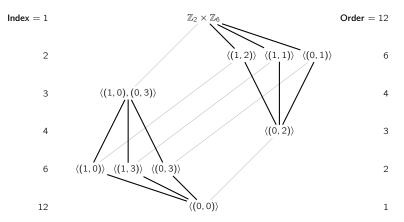
Corollary

Let $A, B \leq G$, with one of them normalizing the other. Then $|AB| = \frac{|A| \cdot |B|}{|A \cap B|}$.

The diamond theorem: duality of subquotients

Let $G = \mathbb{Z}_2 \times \mathbb{Z}_6$, and consider subgroups $A = \langle (1, 0), (0, 3) \rangle$, and $B = \langle (0, 2) \rangle$. Then G = AB, and $A \cap B = \langle (0, 0) \rangle$.

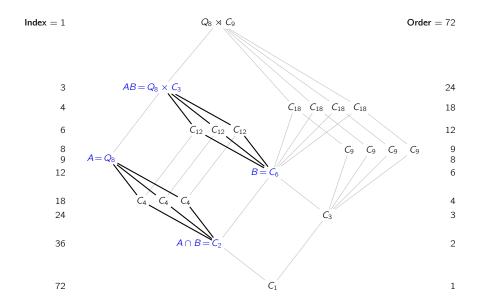
Let's interpret the diamond theorem $AB/B \cong A/A \cap B$ in terms of the subgroup lattice.



The fact that the subgroup lattice of V_4 is diamond shaped is coincidental.

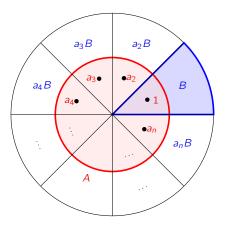
M. Macauley (Clemson)

The diamond theorem: duality of subquotients



The diamond theorem illustrated by a "pizza diagram"

The following analogy is due to Douglas Hofstadter:



- AB =large pizza
- A = small pizza
- B =large pizza slice
- $A \cap B =$ small pizza slice
- $AB/B = \{ \text{large pizza slices} \}$

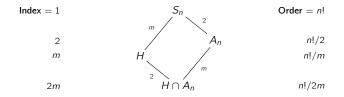
 $A/(A \cap B) = \{\text{small pizza slices}\}$

Diamond theorem: $AB/B \cong A/(A \cap B)$

An application to permutation groups

Proposition

Suppose *H* is a subgroup of S_n that is not contained in A_n . Then exactly half of the permutations in *H* are even.



Proof

It suffices to show that $[H : H \cap A_n] = 2$, or equivalently, that $H/(H \cap A_n) \cong C_2$. Since $H \nleq A_n$, the product HA_n must be strictly larger, and so $HA_n = S_n$. By the diamond theorem,

$$H/(H \cap A_n) = HA_n/A_n = S_n/A_n \cong C_2.$$

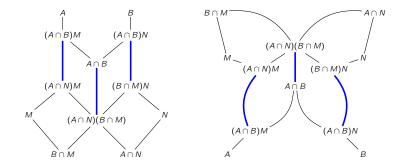
A theorem of Hans Zassenhaus

Butterfly lemma (see book for proof)

Let A, B be subgroups of a group, that contain $M \trianglelefteq A$ and $N \trianglelefteq B$. Then

- 1. $(A \cap N)M \trianglelefteq (A \cap B)M$,
- 2. $(B \cap M)N \trianglelefteq (A \cap B)N$,
- 3. The following quotient groups are isomorphic:

 $\frac{(A\cap B)M}{(A\cap N)M}\cong\frac{(A\cap B)N}{(B\cap M)N}.$



Commutators

We've seen how to divide \mathbb{Z} by (12), thereby "forcing" all multiples of 12 to be zero. This is one way to construct the integers modulo 12: $\mathbb{Z}_{12} \cong \mathbb{Z}/\langle 12 \rangle$.

Now, suppose G is nonabelian. We'd like to divide G by its "non-abelian parts," making them zero and leaving only "abelian parts" in the resulting quotient.

A commutator is an element of the form $aba^{-1}b^{-1}$. Since *G* is nonabelian, *there are non-identity commutators:* $aba^{-1}b^{-1} \neq e$ in *G*.

In this case, the set $C := \{aba^{-1}b^{-1} \mid a, b \in G\}$ contains *more* than the identity.

Definition

The commutator subgroup G' of G is

$$G' := \langle aba^{-1}b^{-1} \mid a, b \in G \rangle.$$

The commutator subgroup is normal in G, and G/G' is abelian (exercise).

The abelianization of a group

Definition

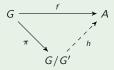
The abelianization of G is the quotient group G/G'.

The commutator subgroup G' is the smallest normal subgroup N of G such that G/N is abelian. [Note that G would be the "largest" such subgroup.]

Equivalently, the quotient G/G' is the largest abelian quotient of G. [Note that $G/G \cong \langle e \rangle$ would be the "smallest" such quotient.]

Universal property of commutator subgroups

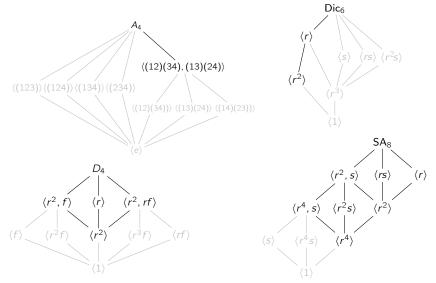
Suppose $f: G \to A$ is a homomorphism to an abelian group A. Then there is a unique homomorphism $h: G/G' \to A$ such that $f = h \circ \pi$:



We say that f "factors through" the abelianization, G/G'.

Some examples of abelianizations

By the isormophism theorems, we can usually identify the commutator subgroup G and abelianation by inspection, from the subgroup lattice.



Higher commutator subgroups

We can iterate the process of taking commutators.

We'll study the successive subquotients G/G', G'/G'', G''/G''',... in Chapter 6.

