Visual Algebra ## Lecture 4.8: Inner and outer automorphisms Dr. Matthew Macauley School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/ ### Inner and outer automorphisms Earlier in this class, we conjugated an entire group G by a fixed element $x \in G$. This is an example of an inner automorphism. Here are two examples: This permutes subgroups within a conjugacy class: $r^{-1}\langle f \rangle r = \langle r^2 f \rangle$. Every subgroup of Q_8 is normal, thus any inner automorphism fixes every subgroup. However, there is an automorphism of Q_8 that permutes subgroups, defined by $$\phi: Q_8 \longrightarrow Q_8, \qquad \phi(i) = j, \quad \phi(j) = k \quad \Rightarrow \quad \phi(k) = \phi(ij) = \phi(i)\phi(j) = jk = i.$$ This is called an outer automorphism. ### The inner automorphism group #### Definition An inner automorphism of G is an automorphism $\varphi_X \in Aut(G)$ defined by $$\varphi_{x}(g) := x^{-1}gx$$, for some $x \in G$. The inner automorphisms of G form a group, denoted Inn(G). (Exercise) There are four inner automorphisms of D_4 : $$\mathsf{Id} = \varphi_1 = \varphi_{r^2} \quad \begin{array}{|c|c|c|} \hline \bigcap_1 & \bigcap_r & \bigcap_r & \bigcap_r \\ \hline \bigcap_{r^2} & \bigcap_r & \bigcap_r & \bigcap_r \\ \hline \bigcap_r & \bigcap_r & \bigcap_r & \bigcap_r & \bigcap_r \\ \hline \end{array}$$ | 1 | r | ()
f | $r^2 f$ | |-------|-------|---------|---------------------------| | r^2 | r^3 | rf – | - r ³ f | $$arphi_{rf} = arphi_{r^3f}$$ $\varphi_f = \varphi_{r^2f}$ Since $\varphi_x^2 = \operatorname{Id}$ for all of these, $\operatorname{Inn}(D_4) = \langle \varphi_r, \varphi_f \rangle \cong V_4$. Are there any other automorphisms of D_4 ? ### The inner automorphism group ### Proposition (exercise) Inn(G) is a normal subgroup of Aut(G). #### Remarks - Many books define $\varphi_x(g) = xgx^{-1}$. Our choice is so $\varphi_{xy} = \varphi_x \varphi_y$ (reading L-to-R). - If $z \in Z(G)$, then $\varphi_z \in Inn(G)$ is trivial. - If x = yz for some $z \in Z(G)$, then $\varphi_x = \varphi_y$ in Inn(G): $$\varphi_X(g) = x^{-1}gx = (yz)^{-1}g(yz) = z^{-1}(y^{-1}gy)z = y^{-1}gy = \varphi_Y(g).$$ That is, if x and y are in the same coset of Z(G), then $\varphi_X = \varphi_Y$. (And conversely.) | Z | rΖ | fΖ | rfZ | |-------|----------------|--------|------------------| | 1 | r | f | rf | | r^2 | r ³ | r^2f | r ³ f | | | | | | cosets of $Z(\mathcal{D}_4)$ are in bijection with inner automorphisms of \mathcal{D}_4 inner automorphisms of D_4 permute elements within conjugacy classes ### The inner automorphism group #### Key point Two elements $x, y \in G$ are in the same coset of Z(G) if and only if $\varphi_x = \varphi_y$ in Inn(G). #### Proposition In any group G, we have $G/Z(G) \cong Inn(G)$. #### Proof Consider the map $$f: G \longrightarrow Inn(G), \qquad x \longmapsto \varphi_x,$$ It is straightfoward to check this this is (i) a homomorphism, (ii) onto, and (iii) that Ker(f) = Z(G). The result is now immediate from the FHT. We just saw that $\operatorname{Aut}(D_3) \cong D_3$, and we know that $Z(D_3) = \langle 1 \rangle$. Therefore, $$Inn(D_3) \cong D_3/Z(D_3) \cong D_3 \cong Aut(D_3),$$ i.e., every automorphism is inner. ## Inn(G) can *never* be a nontrivial cyclic subgroup #### Lemma If $Inn(G) \cong G/Z(G)$ is cyclic, then G is abelian. $$G/Z(G) = \langle gZ \rangle$$, where $Z = Z(G)$ If G is abelian, then Z(G) = G. #### Corollary For any group G, finite or infinite, $[G:Z(G)] \ge 4$. ### Inner automorphisms of D_3 Let's label each $\phi \in Aut(D_3)$ with the corresponding inner automorphism. #### Automorphisms of D_4 Every automorphism of $D_4 = \langle r, f \rangle$ is determined by where it sends the generators: $$\phi(r) = \underbrace{r \text{ or } r^3}_{\text{2 choices}}, \qquad \phi(f) = \underbrace{f, rf, r^2f, r^3f, \text{ or } r^2}_{\text{5 choices}}.$$ Thus $|\operatorname{Aut}(D_4)| \le 10$. But $\operatorname{Inn}(D_4) \le \operatorname{Aut}(D_4)$, forces $|\operatorname{Aut}(D_4)| = 4$ or 8. Moreover, $$\omega \colon D_4 \longrightarrow D_4$$, $\omega(r) = r$, $\omega(f) = rf$ is an (outer) automorphism, which swaps the "two types" of reflections of the square. $$\varphi_{rf}\omega$$ $\operatorname{Aut}(D_4) = \left\{ \operatorname{Id}, \ \varphi_r, \ \varphi_f, \ \varphi_{rf}, \ \omega, \ \varphi_r \omega, \ \varphi_f \omega, \ \varphi_{rf} \omega \right\} = \operatorname{Inn}(D_4) \cup \operatorname{Inn}(D_4) \omega \cong D_4.$ ### The full automorphism group of D_4 $Id = \varphi_1$ $$Inn(D_4) = \langle \varphi_r, \varphi_f \rangle$$ $$\begin{array}{c|cccc} \hline (M) & (M) & (M) & (M) \\ \hline (M) & (M) & (M) & (M) \\ \hline (M) & (M) & (M) & (M) \\ \hline (M) & (M) & (M) & (M) \\ \hline (M) & (M) & (M) & (M) \\ \hline (M) & (M) & (M) & (M) \\ \hline (M) & (M) & (M) & (M) \\ \hline (M) & (M) & (M) & (M) & ($$ | Q | P | f r ² f | |----------|-------|--------------------| | r^2 | r^3 | rf r^3f | ω $\varphi_r \omega$ | ()
1 | Q
r | f r ² f | |---------|--------|--------------------| | r^2 | r^3 | rf r³f | | $arphi_{ m rf}$. | 1 | r | f — | $-r^2f$ | |-------------------|-------|----------------|---------|---------| | | r^2 | r ³ | ∩
rf | r^3f | ### The outer automorphism group #### Definition An outer automorphism of G is any automorphism that is not inner. The outer automorphism group of G is the quotient Out(G) := Aut(G)/Inn(G). Note that there are four outer automorphisms, but $|\operatorname{Out}(D_4)| = 2$. We have seen: $Out(V_4) \cong D_3$, $Out(D_3) \cong \{Id\}$, $Out(D_4) \cong C_2$, $Out(Q_8) \cong S_3$. #### Class automorphisms #### Proposition (exercise) Automorphisms permute conjugacy classes. That is, $g, h \in G$ are conjugate if and only if $\phi(g)$ and $\phi(h)$ are conjugate. It is natural to ask if an automorphism being inner is equivalent to being the identity permutation on conjugacy classes. In other words: "if $\phi \in Aut(G)$ sends every element to a conjugate, must $\phi \in Inn(G)$?" The answer is "no". Burnside found examples of groups of order at least 729 that admit such an automorphism. #### Definition A class automorphism is an automorphism that sends every element to another in its conjugacy class. In 1947, G.E. Wall found a group of order 32 with a class automorphism that is outer. #### "A wrinkle in the mathematical universe" –John Baez #### Theorem The outer automorphism group of S_n is $\operatorname{Out}(S_n) \cong \begin{cases} C_2 & \text{if } n = 6 \\ C_1 & \text{otherwise} \end{cases}$ S_6 has an automorphism that permutes the following conjugacy classes: $$\begin{split} \mathsf{cl}_{S_6}\big((12)\big) &\longleftrightarrow \mathsf{cl}_{S_6}\big((12)(34)(56)\big), \qquad \mathsf{cl}_{S_6}\big((123)\big) &\longleftrightarrow \mathsf{cl}_{S_6}\big((145)(256)\big) \\ \\ &\mathsf{cl}_{S_6}\big((12)(345)\big) &\longleftrightarrow \mathsf{cl}_{S_6}\big((123456)\big) \end{split}$$ (12)(36)(45): swaps purple and red (13654): cycles blue \rightarrow orange \rightarrow purple \rightarrow red \rightarrow green $S_5 \cong \langle (12)(36)(45), (13654) \rangle$ ## An outer-automorphism of S_6