Visual Algebra

Lecture 4.8: Inner and outer automorphisms

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Inner and outer automorphisms

Earlier in this class, we conjugated an entire group G by a fixed element $x \in G$.

This is an example of an inner automorphism. Here are two examples:

This permutes subgroups within a conjugacy class: $r^{-1}\langle f \rangle r = \langle r^2 f \rangle$.

Every subgroup of Q_8 is normal, thus any inner automorphism fixes every subgroup.

However, there is an automorphism of Q_8 that permutes subgroups, defined by

$$\phi: Q_8 \longrightarrow Q_8, \qquad \phi(i) = j, \quad \phi(j) = k \quad \Rightarrow \quad \phi(k) = \phi(ij) = \phi(i)\phi(j) = jk = i.$$

This is called an outer automorphism.

The inner automorphism group

Definition

An inner automorphism of G is an automorphism $\varphi_X \in Aut(G)$ defined by

$$\varphi_{x}(g) := x^{-1}gx$$
, for some $x \in G$.

The inner automorphisms of G form a group, denoted Inn(G). (Exercise)

There are four inner automorphisms of D_4 :

$$\mathsf{Id} = \varphi_1 = \varphi_{r^2} \quad \begin{array}{|c|c|c|} \hline \bigcap_1 & \bigcap_r & \bigcap_r & \bigcap_r \\ \hline \bigcap_{r^2} & \bigcap_r & \bigcap_r & \bigcap_r \\ \hline \bigcap_r & \bigcap_r & \bigcap_r & \bigcap_r & \bigcap_r \\ \hline \end{array}$$

1	r	() f	$r^2 f$
r^2	r^3	rf –	- r ³ f

$$arphi_{rf} = arphi_{r^3f}$$

 $\varphi_f = \varphi_{r^2f}$

Since $\varphi_x^2 = \operatorname{Id}$ for all of these, $\operatorname{Inn}(D_4) = \langle \varphi_r, \varphi_f \rangle \cong V_4$.

Are there any other automorphisms of D_4 ?

The inner automorphism group

Proposition (exercise)

Inn(G) is a normal subgroup of Aut(G).

Remarks

- Many books define $\varphi_x(g) = xgx^{-1}$. Our choice is so $\varphi_{xy} = \varphi_x \varphi_y$ (reading L-to-R).
- If $z \in Z(G)$, then $\varphi_z \in Inn(G)$ is trivial.
- If x = yz for some $z \in Z(G)$, then $\varphi_x = \varphi_y$ in Inn(G):

$$\varphi_X(g) = x^{-1}gx = (yz)^{-1}g(yz) = z^{-1}(y^{-1}gy)z = y^{-1}gy = \varphi_Y(g).$$

That is, if x and y are in the same coset of Z(G), then $\varphi_X = \varphi_Y$. (And conversely.)

Z	rΖ	fΖ	rfZ
1	r	f	rf
r^2	r ³	r^2f	r ³ f

cosets of $Z(\mathcal{D}_4)$ are in bijection with inner automorphisms of \mathcal{D}_4

inner automorphisms of D_4 permute elements within conjugacy classes

The inner automorphism group

Key point

Two elements $x, y \in G$ are in the same coset of Z(G) if and only if $\varphi_x = \varphi_y$ in Inn(G).

Proposition

In any group G, we have $G/Z(G) \cong Inn(G)$.

Proof

Consider the map

$$f: G \longrightarrow Inn(G), \qquad x \longmapsto \varphi_x,$$

It is straightfoward to check this this is (i) a homomorphism, (ii) onto, and (iii) that Ker(f) = Z(G).

The result is now immediate from the FHT.

We just saw that $\operatorname{Aut}(D_3) \cong D_3$, and we know that $Z(D_3) = \langle 1 \rangle$. Therefore,

$$Inn(D_3) \cong D_3/Z(D_3) \cong D_3 \cong Aut(D_3),$$

i.e., every automorphism is inner.

Inn(G) can *never* be a nontrivial cyclic subgroup

Lemma

If $Inn(G) \cong G/Z(G)$ is cyclic, then G is abelian.

$$G/Z(G) = \langle gZ \rangle$$
, where $Z = Z(G)$

If G is abelian, then Z(G) = G.

Corollary

For any group G, finite or infinite, $[G:Z(G)] \ge 4$.

Inner automorphisms of D_3

Let's label each $\phi \in Aut(D_3)$ with the corresponding inner automorphism.

Automorphisms of D_4

Every automorphism of $D_4 = \langle r, f \rangle$ is determined by where it sends the generators:

$$\phi(r) = \underbrace{r \text{ or } r^3}_{\text{2 choices}}, \qquad \phi(f) = \underbrace{f, rf, r^2f, r^3f, \text{ or } r^2}_{\text{5 choices}}.$$

Thus $|\operatorname{Aut}(D_4)| \le 10$. But $\operatorname{Inn}(D_4) \le \operatorname{Aut}(D_4)$, forces $|\operatorname{Aut}(D_4)| = 4$ or 8. Moreover,

$$\omega \colon D_4 \longrightarrow D_4$$
, $\omega(r) = r$, $\omega(f) = rf$

is an (outer) automorphism, which swaps the "two types" of reflections of the square.

$$\varphi_{rf}\omega$$

 $\operatorname{Aut}(D_4) = \left\{ \operatorname{Id}, \ \varphi_r, \ \varphi_f, \ \varphi_{rf}, \ \omega, \ \varphi_r \omega, \ \varphi_f \omega, \ \varphi_{rf} \omega \right\} = \operatorname{Inn}(D_4) \cup \operatorname{Inn}(D_4) \omega \cong D_4.$

The full automorphism group of D_4

 $Id = \varphi_1$

$$Inn(D_4) = \langle \varphi_r, \varphi_f \rangle$$

$$\begin{array}{c|cccc}
\hline
(M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & (M) \\
\hline
(M) & (M) & (M) & (M) & ($$

Q	P	f r ² f
r^2	r^3	rf r^3f

ω

 $\varphi_r \omega$

() 1	Q r	f r ² f
r^2	r^3	rf r³f

$arphi_{ m rf}$.	1	r	f —	$-r^2f$
	r^2	r ³	∩ rf	r^3f

The outer automorphism group

Definition

An outer automorphism of G is any automorphism that is not inner.

The outer automorphism group of G is the quotient Out(G) := Aut(G)/Inn(G).

Note that there are four outer automorphisms, but $|\operatorname{Out}(D_4)| = 2$.

We have seen: $Out(V_4) \cong D_3$, $Out(D_3) \cong \{Id\}$, $Out(D_4) \cong C_2$, $Out(Q_8) \cong S_3$.

Class automorphisms

Proposition (exercise)

Automorphisms permute conjugacy classes. That is, $g, h \in G$ are conjugate if and only if $\phi(g)$ and $\phi(h)$ are conjugate.

It is natural to ask if an automorphism being inner is equivalent to being the identity permutation on conjugacy classes.

In other words:

"if $\phi \in Aut(G)$ sends every element to a conjugate, must $\phi \in Inn(G)$?"

The answer is "no". Burnside found examples of groups of order at least 729 that admit such an automorphism.

Definition

A class automorphism is an automorphism that sends every element to another in its conjugacy class.

In 1947, G.E. Wall found a group of order 32 with a class automorphism that is outer.

"A wrinkle in the mathematical universe" –John Baez

Theorem

The outer automorphism group of S_n is $\operatorname{Out}(S_n) \cong \begin{cases} C_2 & \text{if } n = 6 \\ C_1 & \text{otherwise} \end{cases}$

 S_6 has an automorphism that permutes the following conjugacy classes:

$$\begin{split} \mathsf{cl}_{S_6}\big((12)\big) &\longleftrightarrow \mathsf{cl}_{S_6}\big((12)(34)(56)\big), \qquad \mathsf{cl}_{S_6}\big((123)\big) &\longleftrightarrow \mathsf{cl}_{S_6}\big((145)(256)\big) \\ \\ &\mathsf{cl}_{S_6}\big((12)(345)\big) &\longleftrightarrow \mathsf{cl}_{S_6}\big((123456)\big) \end{split}$$

(12)(36)(45): swaps purple and red

(13654): cycles blue \rightarrow orange \rightarrow purple \rightarrow red \rightarrow green

 $S_5 \cong \langle (12)(36)(45), (13654) \rangle$

An outer-automorphism of S_6

