Visual Algebra

Lecture 4.9: External products and holomorphs

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Semidirect products, algebraically

Thus far, we've seen how to construct $A \rtimes_{\theta} B$ with our "inflation method."

Given A (for "automorphism") and B (for "balloon"), we label each inflated node $b \in B$ with $\phi \in \operatorname{Aut}(A)$ via some labeling map

$$\theta \colon B \longrightarrow \operatorname{Aut}(A)$$
.

Naturally, this can be defined algebraically. Denote multiplication in $A \times B$ by

$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2).$$

Definition

The (external) semidirect product $A \bowtie_{\theta} B$ of A and B, with respect to the homomorphism

$$\theta \colon B \longrightarrow \operatorname{Aut}(A)$$
,

is on the underlying set $A \times B$, where the binary operation * is defined as

$$(a_1, b_1) * (a_2, b_2) := (a_1, b_1) \cdot (\theta(b_1)a_2, b_2) = (a_1\theta(b_1)a_2, b_1b_2).$$

The isomorphic group on $B \times A$ by swapping the coordinates above is written $B \ltimes_{\theta} A$.

An example: the direct product $C_5 \times C_4$

An example: the semidirect product $C_5 \rtimes_{\theta} C_4$

External semidirect products

Recall how to multipy in $A \rtimes_{\theta} B$:

$$(a_1, b_1) * (a_2, b_2) := (a_1, b_1) \cdot (\theta(b_1)a_2, b_2) = (a_1 \cdot \theta(b_1)a_2, b_1b_2).$$

Lemma

The subgroup $A \times \{1\}$ is normal in $A \rtimes_{\theta} B$.

Proof

Let's conjugate an arbitrary element $(x, 1) \in A \times \{1\}$ by an element $(a, b) \in A \rtimes_{\theta} B$.

$$(a,b)*(x,1)*(a,b)^{-1} = (a \cdot \underbrace{\theta(b)x}_{\in A}, b)*(a^{-1},b^{-1}) = (\underbrace{a \cdot \theta(b)x \cdot \theta(b)a^{-1}}_{\in A}, 1) \in A \times \{1\}.$$

Not all books use the same notation for semidirect products. Ours is motivated by:

- In $A \times B$, both factors are normal (technically, $A \times \{1\}$ and $\{1\} \times B$).
- In $A \times B$, the group on the "open" side of \times is normal.

The holomorph of a group

Definition

The holomorph of a group is $Hol(G) = G \times Aut(G)$, with labeling map

$$\theta : \underbrace{\operatorname{Aut}(G)}_{B} \longrightarrow \underbrace{\operatorname{Aut}(G)}_{\operatorname{Aut}(A)}, \qquad \theta(\varphi) = \varphi.$$

This means that the binary operation is

$$(g_1, \alpha) * (g_2, \beta) = (g_1 \cdot \alpha(g_2), \alpha\beta)$$

$$Hol(C_3) = C_3 \rtimes C_2$$

$$Hol(C_6) = C_6 \rtimes C_2$$

The holomorph of C_5

Recall that $Aut(C_5) \cong C_4$. Thus, the holomorph of C_5 is

$$\mathsf{Hol}(\mathit{C}_5) \cong \mathit{C}_5 \rtimes \mathsf{Aut}(\mathit{C}_5) \cong \mathit{C}_5 \rtimes \mathit{C}_4.$$

We've already seen this construction.

This is the affine general linear group $AGL_2(\mathbb{Z}_5)$.

The holomorph of V_4

We've also seen the first step of the construction of

$$\operatorname{Hol}(V_4) = V_4 \rtimes \operatorname{Aut}(V_4) \cong V_4 \rtimes D_3.$$

	id	α	α^2	β	αβ	$\alpha^2 \beta$
id	id	α	α^2	β	αβ	$\alpha^2 \beta$
α	α	α^2	id	αβ	$\alpha^2 \beta$	β
α^2	α^2	id	α	$\alpha^2 \beta$	β	αβ
β	β	$\alpha^2 \beta$	αβ	id	α^2	α
αβ	αβ	β	$\alpha^2 \beta$	α	id	α^2
$\alpha^2 \beta$	$\alpha^2 \beta$	αβ	β	α^2	α	id

Replacing each orange and purple edge with four will complete the contruction.

The holomorph of D_3

We've also seen the first step of the construction of

$$Hol(D_3) = D_3 \rtimes Aut(D_3) \cong D_3 \rtimes D_3.$$

Replacing each orange and purple edge with six will complete the contruction.

Internal semidirect products

Remark

In the semidirect product $A \rtimes_{\theta} B$, the subgroups $A \times \{1\}$ and $\{1\} \times B$

■ generate $A \rtimes_{\theta} B$:

$$(A \times \{1\})(\{1\} \times B) = A \rtimes_{\theta} B$$

intersect trivially:

$$\big(A\!\times\!\{1\}\big)\cap\big(\{1\}\!\times\!B\big)=\{(1,1)\}.$$

 \blacksquare one is normal: $A \times \{1\}$.

In the next lecture, we'll see that if G = NH, with

$$G = NH$$

■
$$N \cap H = \{1\}$$

 \blacksquare $N \subseteq G$,

then $G \cong N \rtimes_{\theta} H$, where $\theta \colon H \to Inn(N) \leq Aut(N)$.

This is called an inner or internal semidirect product.

This condidtion can easily be checked in the subgroup lattice, by inspection.

It will also imply that if $Z(G) = \{e\}$, then $Hol(G) \cong G \times G$, and so

$$Hol(D_3) \cong D_3 \rtimes D_3 \cong D_3 \times D_3$$
.