Visual Algebra

Lecture 4.10: Internal products

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Motivation and overview

We've seen how to define the direct product $A \times B$ of two arbitrary groups.

This is called an external (or outer) direct product.

Sometimes, a group is secretly the direct product of two subgroups: $G = NH \cong N \times H$. This is called an internal (or inner) direct product.

We've seen how to define an external semidirect product $A \rtimes_{\theta} B$ of two arbitrary groups. We'll also learn when *G* is an internal semidirect product of subgroups: $G = NH \cong N \rtimes H$. The labeling map $H \to Aut(N)$ sends *h* to an inner automorphism.

Inner direct and semidirect products can be identified by inspection of the subgroup lattice.

We'll also learn about central products, both external and internal.

Internal products

Previously, we've looked at outer products: taking two unrelated groups and constructing a direct or semidirect product.

Now, we'll explore when a group G = NH is isomorphic to a direct or semidirect product.

These are called internal products. Let's see two examples:

Questions

- Can we characterize when $NH \cong N \times H$ and/or $NH \cong N \rtimes_{\theta} H$?
- If $NH \cong N \rtimes_{\theta} H$, then what is the map $\theta \colon H \to Aut(N)$?

Internal direct products

When G = NH is isomorphic to $N \times H$, we have an isomorphism

$$i: N \times H \longrightarrow NH$$
, $i: (n, h) \longmapsto nh$.

Since $N \times \{1\}$ and $\{1\} \times H$ are normal in $N \times H$, the subgroups N and H are normal in NH. Recall that earlier, we showed that

$$|NH| = \frac{|N| \cdot |H|}{|N \cap H|}$$

and so it follows that if $NH \cong N \times H$, then $N \cap H = \{e\}$.

Theorem

Let $N, H \leq G$. Then $G \cong N \times H$ iff the following conditions hold:

(i) N and H are normal (ii) $N \cap H = \{e\}$ (iii) G = NH.

Remark

This has a very nice interpretation in terms of subgroup lattices! Subgroups for which (ii) and (iii) hold are called lattice complements.

Internal semidirect products

When G = NH is isomorphic to $N \rtimes_{\theta} H$, we have an isomorphism

$$i: N \rtimes_{\theta} H \longrightarrow NH, \quad i: (n, h) \longmapsto nh.$$

This time, only $N \times \{1\}$ needs to be normal in $N \rtimes_{\theta} H$, and so $N \trianglelefteq NH$.

As before, from

$$|NH| = \frac{|N| \cdot |H|}{|N \cap H|}$$

we conclude that if $NH \cong N \rtimes_{\theta} H$, then $N \cap H = \{e\}$.

Theorem

Let $N, H \leq G$. Then $G \cong N \rtimes H$ iff the following conditions hold:

(i) N is normal in G (ii) $N \cap H = \{e\}$ (iii) G = NH,

and the homomorphism θ sends *h* to the inner automorphism $\varphi_{h^{-1}}$:

$$\theta \colon H \longrightarrow \operatorname{Aut}(N), \qquad \theta \colon h \longmapsto (n \stackrel{\varphi_{h^{-1}}}{\longmapsto} hnh^{-1}).$$

Let's do several examples for intution, before proving this.

M. Macauley (Clemson)

Examples of internal semidirect products

Observations

■ The group SD₈ decomposes as a semidirect product several ways:

$$N = \langle r \rangle \cong C_8$$
, $H = \langle s \rangle \cong C_2$, $SD_8 = NH \cong C_8 \rtimes_{\theta_3} C_2$.

or alternatively,

$$N = \langle r^2, rs \rangle \cong Q_8, \quad H = \langle s \rangle \cong C_2, \qquad \mathsf{SD}_8 = NH \cong Q_8 \rtimes_{\theta'} C_2.$$

• The group Q_{16} does *not* decompose as a semidirect product!

M. Macauley (Clemson)

Semidihedral groups as semidirect products

Generalized quaternion groups

Recall that a generalized quaternion group is a dicyclic group whose order is a power of 2. It's not hard to see that $r^8 = s^2 = -1$ is contained in every cyclic subgroup.

Therefore, $Q_{2^n} \not\cong N \rtimes H$ for any of its nontrivial subgroups.

M. Macauley (Clemson)

Lattice complements, both normal

Lemma

Let $H, N \leq G$ be lattice complements. These are normal iff hn = nh for all $h \in H$, $n \in N$.

Proof

"⇒:" Since $H, N \leq G$, $[n, h] = nhn^{-1}h^{-1} = n(\underbrace{hn^{-1}h^{-1}}_{\in N}) = (\underbrace{nhn^{-1}}_{\in H})h^{-1} \in H \cap N = \{e\}.$ " (* :" Suppose each [n, h] = e. For an arbitrary $g = nh \in G$, $nhH = nH = \{nh \mid h \in H\} = \{hn \mid h \in H\} = Hn \implies H \leq G$. By symmetry, N must be normal.

Lattice complements, both normal

TheoremLet $N, H \leq G$. Then $G \cong N \times H$ iff the following conditions hold:(i) N, H are normal(ii) $N \cap H = \{e\}$ (iii) G = NH.

Proof

Since N is normal, G = NH. Define the map

$$i: N \times H \longrightarrow NH$$
, $i: (n, h) \longmapsto nh$,

Homomorphism: Since elements in N and H pairwise commute,

$$i((n_1, h_1) \cdot (n_2, h_2)) = i((n_1 n_2, h_1 h_2)) = n_1 n_2 h_1 h_2 = n_1 h_1 n_2 h_2 = i((n_1, h_1)) \cdot i((n_2, h_2)). \checkmark$$

<u>Onto</u>: $nh \in NH$ has preimage $(n, h) \in N \times H$.

1-to-1: Suppose
$$i((n_1, h_1)) = i((n_2, h_2))$$
, or equivalently, $n_1h_1 = n_2h_2$.
Then $n_2^{-1}n_1 = h_2h_1^{-1} \in N \cap H = \{e\}$, so $n_1 = n_2$ and $h_1 = h_2$.

Lattice complements, one normal

Theorem

Let $N, H \leq G$. Then $G \cong N \rtimes H$ iff the following conditions hold:

(i) N is normal in G (ii) $N \cap H = \{e\}$ (iii) G = NH,

and the homomorphism θ sends *h* to the inner automorphism $\varphi_{h^{-1}}$:

$$\theta \colon H \longrightarrow \operatorname{Aut}(N), \qquad \theta \colon h \longmapsto \left(n \stackrel{\varphi_{h^{-1}}}{\longmapsto} hnh^{-1}\right).$$

Proof

Define the map

$$i: N \rtimes_{\theta} H \longrightarrow NH, \qquad i: (n, h) \longmapsto nh,$$

<u>Homomorphism</u>: $i((n_1, h_1)) \cdot i((n_2, h_2)) = n_1 h_1 n_2 h_2$, and

$$i((n_1, h_1) * (n_2, h_2)) = i((n_1 \underbrace{h_1 n_2 h_1^{-1}}_{=\varphi_{h_1^{-1}}(n_2)}, h_1 h_2)) = n_1 h_1 n_2 h_1^{-1} h_1 h_2 = n_1 h_1 n_2 h_2.$$

Bijective: Analogous to the direct product case.

Internal direct and semidirect products

In how many ways does D_6 decompose as a direct or semidirect product of its subgroups?

Decompositions of D_6 into direct and semdirect products

Decompositions of D_6 into direct and semdirect products

 $C_6 \rtimes C_2$

 $C_3 \rtimes V_4$

 $D_3 \rtimes C_2$

 $D_3 \times C_2$

Central products

The following 3 conditions characterize when $G = NH \cong N \times H$.

- 1. H and N are normal,
- 2. $G = \langle H, N \rangle$,
- 3. $H \cap N = \langle 1 \rangle$.

If we weaken the first to only N being normal, we get $G = NH \cong N \rtimes H$.

Alernatively, we can keep the first two but weaken the third.

Definition

Suppose H and N are subgroups of G satisfying:

1. H and N are normal,

2.
$$G = \langle H, N \rangle$$
,

3. $H \cap N \leq Z(G)$.

The G is an internal central product of N and H, denoted $G \cong N \circ H$.

We can also define an external central product of A and B, but we won't do that here.

Revisiting the diquaternion groups

How many semidirect products can you find of the form $H \rtimes_{\theta} C_2$, just by inspection?

Do you see any central products?

Central products

The diquaternion group DQ_8 is a central product two nontrivial ways:

$$\blacksquare DQ_8 \cong C_4 \circ D_4 \qquad \blacksquare DQ_8 \cong C_4 \circ Q_8.$$

Recall that $Z(DQ_8) = N \cong C_4$.

