Visual Algebra

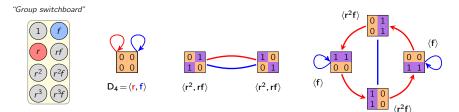
Lecture 5.3: Two theorems on orbits

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

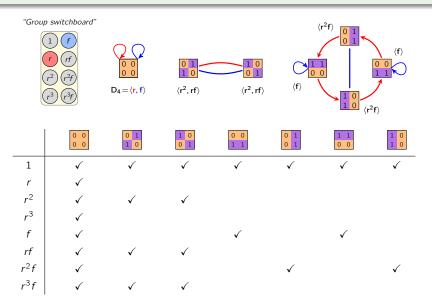
Motivation

Our binary square example gives us some key intuition about group actions.



Qualitative Observation 2

Actions whose fixed point tables have more "checkmarks" tend to have more orbits.



Two theorems on orbits, and their consequences

Qualitative observations

- elements in larger orbits tend to have smaller stabilizers, and vice-versa
- actions whose fixed point tables have more "checkmarks" tend to have more orbits.

Both of these qualitative observations can be formalized into quantitative theorems.

Theorems

- 1. Orbit-stabilizer theorem: the size of an orbit is the index of the stabilizer.
- 2. Orbit-counting theorem: the number of orbits is the average number of things fixed by a group element.

If we set up our group actions correctly, the orbit-stabilizer theorem will imply:

- The size of the conjugacy class $cl_G(H)$ is the index of the normalizer of $H \leq G$
- The size of the conjugacy class $cl_G(x)$ is the index of the centralizer of $x \in G$

We can also determine the number of conjugacy classes from the orbit-counting theorem.

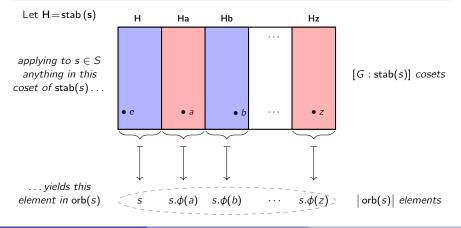
Our first theorem on orbits

Orbit-stabilizer theorem

For any group action $\phi: G \to \text{Perm}(S)$, and $s \in S$, the size of the orbit containing s is

 $\operatorname{orb}(s)| = [G : \operatorname{stab}(s)].$

By Lagrange's theorem, this says that $|\operatorname{orb}(s)| \cdot |\operatorname{stab}(s)| = |G|$.



M. Macauley (Clemson)

Our first theorem on orbits

Orbit-stabilizer theorem

For any group action $\phi: G \to \text{Perm}(S)$, and $s \in S$, the size of the orbit containing s is

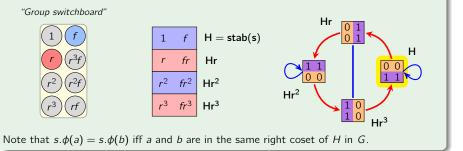
 $|\operatorname{orb}(s)| = [G : \operatorname{stab}(s)].$

By Lagrange's theorem, this says that $|\operatorname{orb}(s)| \cdot |\operatorname{stab}(s)| = |G|$.

Proof

<u>Goal</u>: Exhibit a bijection between elements of orb(s), and right cosets of stab(s).

That is, "two g-buttons send s to the same place iff they're in the same coset".



M. Macauley (Clemson)

The orbit-stabilizer theorem: |orb(s)| = [G : stab(s)]

Let $H \setminus G$ denote the set of right cosets of H in G. [Recall: G/H is the set of left cosets.]

Proof

Throughout, let $H = \operatorname{stab}(s)$. Define a map

 $f: H \setminus G \longrightarrow \operatorname{orb}(s), \qquad f: Hg \longmapsto s.\phi(g).$

<u>Well-defined</u>: Suppose Ha = Hb. Then

$$\begin{aligned} Hab^{-1} &= H &\implies ab^{-1} \in H \\ &\implies s.\phi(ab^{-1}) = s \\ &\implies s.\phi(a)\phi(b^{-1}) = s \\ &\implies s.\phi(a)\phi(b)^{-1} = s \\ &\implies s.\phi(a) = s.\phi(b) \\ &\implies f(Ha) = f(Hb) \end{aligned}$$

(by the "boring but useful coset lemma") (by definition of stabilzer) (properties of homomorphisms) (properties of homomorphisms) (right-multiply by $\phi(b)$) (by definition of f)

<u>One-to-one</u>: Change each \implies into \iff . Onto: The preimage of $s' = s.\phi(q)$ is Hq.

If we have instead, a left group action, the proof carries through but using left cosets.

 \checkmark

Our second theorem on orbits

Orbit-counting theorem

Let a finite group G act on a set S via $\phi: G \to \operatorname{Perm}(S)$. Then

$$|\operatorname{Orb}(\phi)| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|.$$

This says that the "average number of checkmarks per row" is the number of orbits:

	0 0 0 0	0 1 1 0	1 0 0 1	0 0 1 1	0 1 0 1	1 1 0 0	1 0 1 0
1	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
r	\checkmark						
r^2	\checkmark	\checkmark	\checkmark				
r ³	\checkmark						
f	~			\checkmark		\checkmark	
rf	\checkmark	\checkmark	\checkmark				
$r^2 f$	\checkmark				\checkmark		\checkmark
r ³ f	\checkmark	\checkmark	\checkmark				

Orbit-counting theorem: $|\operatorname{Orb}(\phi)| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}(g)|.$

Proof

Let's first count the number of checkmarks in the fixed point table, three ways:

$$\sum_{\substack{g \in G \\ \text{count by rows}}} |\operatorname{fix}(g)| = \left| \{(g, s) \in G \times S \mid s.\phi(g) = s \} \right| = \sum_{\substack{s \in S \\ \text{count by columns}}} |\operatorname{stab}(s)|$$

By the orbit-stabilizer theorem, we can replace each $|\operatorname{stab}(s)|$ with $|G|/|\operatorname{orb}(s)|$:

$$\sum_{s\in S} |\operatorname{stab}(s)| = \sum_{s\in S} \frac{|G|}{|\operatorname{orb}(s)|} = |G| \sum_{s\in S} \frac{1}{|\operatorname{orb}(s)|}.$$

Let's express this sum over all disjoint orbits $S = O_1 \cup \cdots \cup O_k$ separately:

$$G|\sum_{s\in S} \frac{1}{|\operatorname{orb}(s)|} = |G|\sum_{\mathcal{O}\in\operatorname{Orb}(\phi)} \left(\sum_{\substack{s\in \mathcal{O} \\ =1 \pmod{why?}}} \frac{1}{|\operatorname{orb}(s)|}\right) = |G|\sum_{\mathcal{O}\in\operatorname{Orb}(\phi)} 1 = |G| \cdot |\operatorname{Orb}(\phi)|.$$

Equating this last term with the first term gives the desired result.