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Motivation

Our binary square example gives us some key intutition about group actions.

Qualitative Observation 1

Elements in larger orbits tend to have smaller stabilizers, and vice-versa

“Group switchboard”
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Qualitative Observation 2
Actions whose fixed point tables have more “checkmarks” tend to have more orbits. J

Group switchboard (r2f)
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Two theorems on orbits, and their consequences

Qualitative observations
m elements in larger orbits tend to have smaller stabilizers, and vice-versa

m actions whose fixed point tables have more “checkmarks” tend to have more orbits.

Both of these qualitative observations can be formalized into quantitative theorems.

Theorems

1. Orbit-stabilizer theorem: the size of an orbit is the index of the stabilizer.

2. Orbit-counting theorem: the number of orbits is the average number of things fixed by
a group element.

If we set up our group actions correctly, the orbit-stabilizer theorem will imply:
m The size of the conjugacy class clg(H) is the index of the normalizer of H < G
m The size of the conjugacy class clg(x) is the index of the centralizer of x € G
We can also determine the number of conjugacy classes from the orbit-counting theorem.
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Our first theorem on orbits

Orbit-stabilizer theorem

For any group action ¢: G — Perm(S), and s € S, the size of the orbit containing s is

|orb(s)| = [G : stab(s)].

By Lagrange’s theorem, this says that |orb(s)| - | stab(s)| = |G]|.

Let H=stab (s) H Ha Hb Hz

applying tos € S
anything in this
coset of stab(s) ...

LS ®a e b ®z
... yields this I —m————
element inorb(s) s s.p(a) s.p(b) e osap(z)
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Our first theorem on orbits

Orbit-stabilizer theorem

For any group action ¢: G — Perm(S), and s € S, the size of the orbit containing s is

|orb(s)| = [G : stab(s)].

By Lagrange's theorem, this says that |orb(s)| - | stab(s)| = |G|.

Proof

Goal: Exhibit a bijection between elements of orb(s), and right cosets of stab(s).

That is, “two g-buttons send s to the same place iff they're in the same coset'.

“Group switchboard”
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Note that s.¢(a) = s.¢(b) iff a and b are in the same right coset of H in G.

y

M. Macauley (Clemson) Lecture 5.3: Two theorems on orbits Visual Algebra

6/9


mailto:macaule@clemson.edu

The orbit-stabilizer theorem: |orb(s)| = [G : stab(s)]

Let H\ G denote the set of right cosets of H in G. [Recall: G/H is the set of left cosets.]

Proof
Throughout, let H = stab(s). Define a map
f: H\G — orb(s), f: Hg— s.¢(9).
Well-defined: Suppose Ha = Hb. Then
Hab'=H = ableH (by the “boring but useful coset lemma”)
= sp(ab ) =s (by definition of stabilzer)
=  s.p(a)p(b ) =s (properties of homomorphisms)
=  s.p(a)p(b)t=s (properties of homomorphisms)
=  s.¢(a) = s.¢(b) (right-multiply by ¢(b))
= f(Ha) = f(Hb) (by definition of f)
One-to-one: Change each = into <. v
Onto: The preimage of s’ = s.¢(g) is Hg. v

If we have instead, a left group action, the proof carries through but using left cosets.
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Our second theorem on orbits

Orbit-counting theorem
Let a finite group G act on a set S via ¢: G — Perm(S). Then

1 .
|0m(@)| = 15 2 1)

geG

This says that the "average number of checkmarks per row'" is the number of orbits:
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Orbit-counting theorem: | Orb(¢) \G\ Z | fix(g
geiG

Proof

Let's first count the number of checkmarks in the fixed point table, three ways:

S 1fix(9)] = [{(9.5) € G x S | sd9) = s}| = 3 Istab(s)] -

gei seS
N e N e
count by rows count by columns

By the orbit-stabilizer theorem, we can replace each |stab(s)| with |G|/| orb(s)]:

_« Il
Z|stab(5)| Z| orb(s)] |Z |0l‘b(5)‘

seES

Let’'s express this sum over all disjoint orbits S = O; U - - - U Oy separately:

OeOrb s€O O€O0rb(¢)
ﬁ/_/
=1 (why?)
Equating this last term with the first term gives the desired result. O
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