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Motivation

Our binary square example gives us some key intutition about group actions.

Qualitative Observation 1
Elements in larger orbits tend to have smaller stabilizers, and vice-versa

“Group switchboard”
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Qualitative Observation 2
Actions whose fixed point tables have more “checkmarks” tend to have more orbits.

“Group switchboard”
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Two theorems on orbits, and their consequences

Qualitative observations
elements in larger orbits tend to have smaller stabilizers, and vice-versa

actions whose fixed point tables have more “checkmarks” tend to have more orbits.

Both of these qualitative observations can be formalized into quantitative theorems.

Theorems
1. Orbit-stabilizer theorem: the size of an orbit is the index of the stabilizer.

2. Orbit-counting theorem: the number of orbits is the average number of things fixed by
a group element.

If we set up our group actions correctly, the orbit-stabilizer theorem will imply:

The size of the conjugacy class clG (H) is the index of the normalizer of H ≤ G

The size of the conjugacy class clG (x) is the index of the centralizer of x ∈ G

We can also determine the number of conjugacy classes from the orbit-counting theorem.
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Our first theorem on orbits

Orbit-stabilizer theorem
For any group action φ : G ! Perm(S), and s ∈ S, the size of the orbit containing s is

| orb(s)| = [G : stab(s)].

By Lagrange’s theorem, this says that | orb(s)| · | stab(s)| = |G |.

Let H=stab (s)

applying to s ∈ S
anything in this

coset of stab(s) . . .

. . . yields this
element in orb(s)

[G : stab(s)] cosets

∣∣ orb(s)
∣∣ elements

H

• e

Ha

• a

Hb

• b

· · ·

· · ·

Hz

• z

s s.φ(a) s.φ(b) · · · s.φ(z)
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Our first theorem on orbits

Orbit-stabilizer theorem
For any group action φ : G ! Perm(S), and s ∈ S, the size of the orbit containing s is

| orb(s)| = [G : stab(s)].

By Lagrange’s theorem, this says that | orb(s)| · | stab(s)| = |G |.

Proof
Goal: Exhibit a bijection between elements of orb(s), and right cosets of stab(s).

That is, “two g-buttons send s to the same place iff they’re in the same coset”.

“Group switchboard”
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Note that s.φ(a) = s.φ(b) iff a and b are in the same right coset of H in G .
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The orbit-stabilizer theorem: | orb(s)| = [G : stab(s)]

Let H\G denote the set of right cosets of H in G . [Recall: G/H is the set of left cosets.]

Proof
Throughout, let H = stab(s). Define a map

f : H\G −! orb(s), f : Hg 7−! s.φ(g).

Well-defined: Suppose Ha = Hb. Then

Hab−1 = H =⇒ ab−1 ∈ H (by the “boring but useful coset lemma”)
=⇒ s.φ(ab−1) = s (by definition of stabilzer)
=⇒ s.φ(a)φ(b−1) = s (properties of homomorphisms)
=⇒ s.φ(a)φ(b)−1 = s (properties of homomorphisms)
=⇒ s.φ(a) = s.φ(b) (right-multiply by φ(b))
=⇒ f (Ha) = f (Hb) (by definition of f )

One-to-one: Change each =⇒ into ⇐⇒. X

Onto: The preimage of s ′ = s.φ(g) is Hg. X

If we have instead, a left group action, the proof carries through but using left cosets.
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Our second theorem on orbits

Orbit-counting theorem
Let a finite group G act on a set S via φ : G ! Perm(S). Then

|Orb(φ)| =
1
|G |

∑
g∈G
| fix(g)|.

This says that the “average number of checkmarks per row” is the number of orbits:
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Orbit-counting theorem: |Orb(φ)| =
1
|G |

∑
g∈G
| fix(g)|.

Proof
Let’s first count the number of checkmarks in the fixed point table, three ways:∑

g∈G
| fix(g)|

︸ ︷︷ ︸
count by rows

=
∣∣∣{(g, s) ∈ G × S | s.φ(g) = s

}∣∣∣ =
∑
s∈S
| stab(s)|

︸ ︷︷ ︸
count by columns

.

By the orbit-stabilizer theorem, we can replace each | stab(s)| with |G |/| orb(s)|:

∑
s∈S
| stab(s)| =

∑
s∈S

|G |
| orb(s)|

= |G |
∑
s∈S

1
| orb(s)|

.

Let’s express this sum over all disjoint orbits S = O1 ∪ · · · ∪ Ok separately:

|G |
∑
s∈S

1
| orb(s)|

= |G |
∑

O∈Orb(φ)

(∑
s∈O

1
| orb(s)|︸ ︷︷ ︸

=1 (why?)

)
= |G |

∑
O∈Orb(φ)

1 = |G | · |Orb(φ)|.

Equating this last term with the first term gives the desired result. �
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