Visual Algebra

Lecture 5.5: Actions of automorphisms

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Actions of automorphism groups

For any G, the automorphism group Aut(G) naturally acts on S=G via a homomorphism

$$\phi \colon \operatorname{Aut}(G) \longrightarrow \operatorname{Perm}(S)$$
, $\phi(\sigma) = \text{the permutation that sends each } g \mapsto \sigma(g)$.

Let's see an example. Any $\sigma \in Aut(Q_8)$ must send i to an element of order 4: $\pm i$, $\pm j$, $\pm k$.

This leaves 4 choices for $\sigma(j)$. Therefore, $|\operatorname{Aut}(Q_8)| \leq 24$.

The inner automorphism group is $N := Inn(Q_8) = \{ Id, \varphi_i, \varphi_i, \varphi_k \}.$

$$Inn(Q_8) \cong Q_8/\langle -1 \rangle \cong V_4$$

$$\begin{array}{c|cccc}
Z & iZ & jZ & kZ \\
\hline
1 & i & j & k \\
-1 & -i & -j & -k
\end{array}$$

cosets of $Z(Q_8)$ are in bijection with inner automorphisms of Q8

inner automorphisms of Q₈ permute elements within conjugacy classes

All 6 permutations of $\{i,j,k\}$ define a subgroup $H \leq \operatorname{Aut}(Q_8)$. Since $N \cap H = \langle \operatorname{Id} \rangle$,

$$\operatorname{Aut}(Q_8) \cong \operatorname{Inn}(Q_8) \rtimes \underbrace{\mathcal{H}}_{\cong S_3} = \operatorname{Inn}(Q_8) \rtimes \operatorname{Out}(Q_8) \cong V_4 \rtimes S_3 \cong S_4.$$

Automorphisms of Q_8

The group $Aut(Q_8)$ naturally acts on the set S of...

- \blacksquare elements of Q_8 , via
 - $\phi \colon \operatorname{Aut}(G) \longrightarrow \operatorname{Perm}(S), \qquad \phi(\sigma) = \text{the permutation that sends each } g \mapsto \sigma(g).$
- conjugacy classes of Q₈, via
 - $\theta \colon \operatorname{Aut}(G) \longrightarrow \operatorname{Perm}(S), \qquad \theta(\sigma) = \text{the permutation sending each } \operatorname{cl}_G(g) \mapsto \operatorname{cl}_G(\sigma(g)).$

Automorphisms of Q_8

There are also actions by the inner and outer automorphism groups.

$$Inn(Q_8) \cong V_4$$
 acting on $S = Q_8$.

$$Out(Q_8) \cong S_3$$
 does not act on $S = Q_8$

These groups can also act on the:

- \blacksquare conjugacy classes of G,
- \blacksquare set of subgroups of G.

Characteristic subgroups

Definition

A subgroup $H \leq G$ is characteristic, written H char G or $H \triangleleft G$, if $\sigma(H) = H$ for all $\sigma \in \operatorname{Aut}(G)$.

Examples of characteristic subgroups are the center Z(G) and commutator subgroup G'.

Normality is *not* transitive: $K \subseteq H \subseteq G$ does not imply $K \subseteq G$.

Proposition

Being characteristic is transitive: $K \triangleleft H \triangleleft G$ implies $K \triangleleft G$.

Characterstic subgroup diagrams

Sometimes, it is helpful to see a subgroup diagram variant, where the nodes are automorphs, instead of conjugacy classes.

Other characteristic subgroups

A maximal subgroup of G is some $M \leq G$ for which $M \leq H \leq G$ implies H = M or H = G.

Definition

The Frattini subgroup, denoted $\Phi(G)$, is the intersection of all maximal subgroups of G.

Properties

- lacktriangledown $\Phi(G)$ is characteristic, and hence normal.
- $lacktriangledown \Phi(G)$ is the set of non-generating elements of G:

$$\Phi(G) = \{ a \in G \mid \text{if } a \in S \text{ and } G = \langle S \rangle, \text{ then } G = \langle S \setminus \{a\} \rangle \}.$$

■ If H and K are finite, then $\Phi(H \times K) = \Phi(H) \times \Phi(K)$.

Definition

The scole, denoted soc(G), is the generated by all minimal normal subgroups of G.

If G is a finite solvable group, then soc(G) is a product of cyclic groups of prime order.

Examples

Let's compute the center, commutator subgroup, Frattini subgroup, socle of $G = Q_8 \rtimes C_9$.

Examples

Let's compute the center, commutator subgroup, Frattini subgroup, socle of $G = SA_{16}$.

Examples

Let's compute the center, commutator subgroup, Frattini subgroup, socle of $G = C_7 \rtimes C_6$.

