Visual Algebra

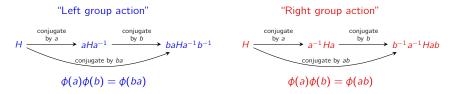
Lecture 5.6: Action equivalence and G-set isomorphism

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Action equivalence

Let's recall the difference between left-conjugating and right conjugating:

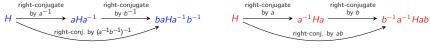


There's a better way to describe left actions than the faux-homomorphic $\phi(a)\phi(b) = \phi(ba)$.

"Left group action"

"Right group action"

right-conjugate right-conjugate



$$\phi(a^{-1})\phi(b^{-1}) = \phi(a^{-1}b^{-1}) = \phi((ba)^{-1})$$

 $\phi(a)\phi(b) = \phi(ab)$

Big idea

For every right action, there is an "equivalent" left-action where:

"pressing g-buttons, from L-to-R" \Leftrightarrow "pressing g^{-1} -buttons, from R-to-L".

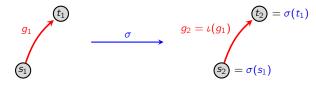
Action equivalence, informally

Action equivalence is more general. Consider two groups acting on sets, say via

$$\phi_1: G_1 \longrightarrow \operatorname{Perm}(S_1), \quad \text{and} \quad \phi_2: G_2 \longrightarrow \operatorname{Perm}(S_2).$$

If these are "equivalent", then we'll need

- a set bijection $\sigma: S_1 \longrightarrow S_2$
- a group isomorphism $\iota: G_1 \longrightarrow G_2$.



Informally, these actions are equivalent if:

- 1. pressing the g_1 -button in the G_1 -switchboard, followed by
- 2. applying $\sigma \colon S_1 \to S_2$ to get to the other graph

is the same as doing these steps in reverse order. That is,

- 1. applying $\sigma \colon S_1 \to S_2$ to get to the other graph, then
- 2. pressing the $\iota(g_1)$ -button on the G_2 -switchboard.

A familiar example of equivalent actions

We've seen the groups:

- D_3 act on a set X of six triangles,
- **S**₃ act on a set X' of six permuations of **123**.

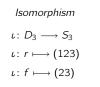
These two actions are equivalent.

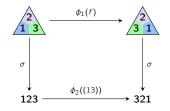
$$r^{2}f = (12)$$

 $r^{2}f = (12)$
 $r^{2}f = (23)$
 $r^{2}f = (123)$

 $X' = \{123, 132, 213, 231, 312, 321\}$

Set bijection



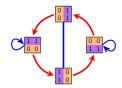


Equivalence of actions

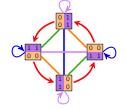
Consider the following two sets:

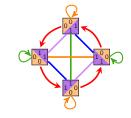
$$S = \left\{ \begin{array}{ccc} 0 & 0 \\ 1 & 1 \end{array}, \begin{array}{ccc} 0 & 1 \\ 0 & 1 \end{array}, \begin{array}{ccc} 1 & 1 \\ 0 & 0 \end{array}, \begin{array}{ccc} 1 & 0 \\ 1 & 0 \end{array} \right\} \qquad S' = \left\{ \begin{array}{cccc} 1 & 0 \\ 1 & 0 \end{array}, \begin{array}{cccc} 0 & 1 \\ 0 & 1 \end{array}, \begin{array}{cccc} 0 & 1 \\ 0 & 0 \end{array} \right\}$$

Should the following two D₄-actions be considered "equivalent"?



What if we add generators?





Action equivalence, formally

Definition

Two actions $\phi_1: G_1 \longrightarrow \operatorname{Perm}(S_1)$ and $\phi_2: G_2 \longrightarrow \operatorname{Perm}(S_2)$ are equivalent if there is an isomorphism $\iota: G_1 \to G_2$ and a bijection $\sigma: S_1 \to S_2$ such that

$$\sigma \circ \phi_1(g) = \phi_2(\iota(g)) \circ \sigma$$
, for all $g \in G$.

We say that the resulting action graphs are action equivalent.

If $G_1 = G_2$ and $\iota: G \to G$ is the identity map, then S_1 and S_2 are isomorphic as G-sets.

This can be expressed with a commutative diagram:

Action equivalence can be used to show that in our binary square example, we could have:

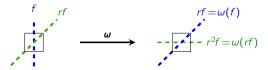
- defined $\phi(r)$ to rotate clockwise, and $\phi(f)$ to flip vertically
- used tiles with a and b, rather than 0 and 1
- read from right-to-left, rather than left-to-right, etc.

Equivalence of actions

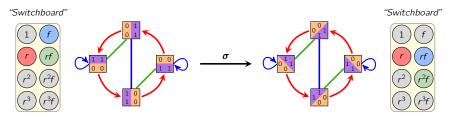
Consider the following two sets:

$$S = \left\{ \begin{array}{ccc} 0 & 0 \\ 1 & 1 \end{array}, \begin{array}{ccc} 0 & 1 \\ 0 & 1 \end{array}, \begin{array}{ccc} 1 & 1 \\ 0 & 0 \end{array}, \begin{array}{ccc} 1 & 0 \\ 1 & 0 \end{array} \right\} \qquad S' = \left\{ \begin{array}{cccc} 1 & 0 \\ 1 & 0 \end{array}, \begin{array}{cccc} 0 & 1 \\ 0 & 1 \end{array}, \begin{array}{cccc} 0 & 1 \\ 0 & 0 \end{array} \right\}$$

The map $\sigma: S \longrightarrow S'$ and outer automorphism $\omega \in Aut(D_4)$



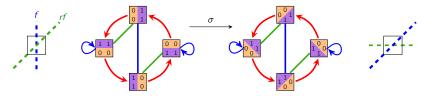
define an equivalence between the following actions:



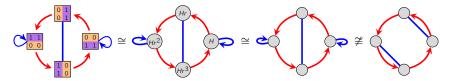
Action equivalence (weaker) vs. G-set isomorphism (stronger)

Just like we did for groups, we formalized what it means for G-sets to be isomorphic.

Since $\iota: G \to G$ must be the identity, the following is *not* a *G*-set isomorphism:



Therefore, the following equivalent actions, are as D_4 -sets:



Every right action has an equivalent left action

	G acting on	right action	equivalent left action
	itself by multiplication	$x \mapsto xg$	$x \mapsto g^{-1}x$
	itself by conjugation	$x\mapsto g^{-1}xg$	$x \mapsto g x g^{-1}$
	its subgroups by conjugation	$H\mapsto g^{-1}Hg$	$H\mapsto gHg^{-1}$
	cosets by multiplication	$Hx \mapsto Hxg$	$xH \mapsto g^{-1}xH$
σ		$\begin{array}{ccc} & \xrightarrow{\phi_R(g)} & xg \\ & & & \downarrow^{\sigma} \\ & & & \downarrow^{\sigma} \\ & & & \downarrow^{-1} & \xrightarrow{\phi_L(g)} & g^{-1}x^{-1} \end{array}$	$\begin{array}{c} x & \stackrel{\phi_R(g)}{\longrightarrow} & xg \\ Id & & & \\ x & \stackrel{\theta(g)}{\longmapsto} & gx \end{array}$
-	$x \mapsto rx$	$x \mapsto xr$	$ x \mapsto r^{-1}x = r^2x $
	$x \mapsto fx$	$x \mapsto xf$	$x \mapsto f^{-1}x = fx$
	$d \theta$ f 1 d not an equivalence	ϕ_R (r) (1)	$\xrightarrow{\sigma}$ n equivalence (2) (r)

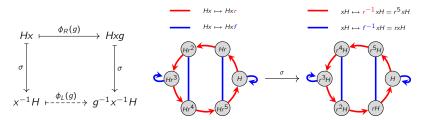
 σ

 X^{-}

Every right action has an equivalent left action

G acting on	right action	equivalent left action
itself by multiplication	$x \mapsto xg$	$x\mapsto g^{-1}x$
itself by conjugation	$x\mapsto g^{-1}xg$	$x \mapsto g x g^{-1}$
its subgroups by conjugation	$H\mapsto g^{-1}Hg$	$H\mapsto gHg^{-1}$
cosets by multiplication	$Hx \mapsto Hxg$	$xH\mapsto g^{-1}xH$

Recall that aH = bH implies $Ha^{-1} = Hb^{-1}$.



Since $aH = bH \Rightarrow Ha = Hb$, the the map $xH \mapsto Hx$ is not even well-defined.

Actions by permutations matrices

Consider the following permutation $\pi \in S_5$:

$$\frac{i \ | \ 1 \ 2 \ 3 \ 4 \ 5}{\pi(i) \ | \ 2 \ 3 \ 1 \ 5 \ 4} \qquad 1 \ 2 \ 3 \ 4 \ 5 \qquad \pi = (123)(45)$$

The permutation matrix P_{π} permutes the entries of a column vector as

$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_1 \\ x_2 \\ x_5 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_{\pi^{-1}(1)} \\ x_{\pi^{-1}(2)} \\ x_{\pi^{-1}(4)} \\ x_{\pi^{-1}(4)} \end{bmatrix},$$

and the entries of a row vector as

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} x_2 & x_3 & x_1 & x_5 & x_4 \end{bmatrix}$$
$$= \begin{bmatrix} x_{\pi(1)} & x_{\pi(2)} & x_{\pi(3)} & x_{\pi(4)} & x_{\pi(5)} \end{bmatrix}$$

Actions by permutations matrices

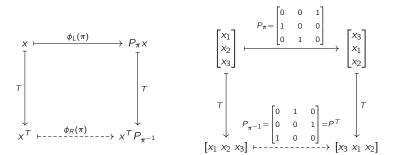
In general, a left action of S_n on a set of vectors X

$$\phi_L \colon S_n \longrightarrow \operatorname{Perm}(X), \qquad \phi_L(\pi) \colon x \longmapsto P_{\pi} x$$

is equivalent to the right action

$$\phi_R \colon S_n \longrightarrow \operatorname{Perm}(X), \qquad \phi_R(\pi) \colon x \longmapsto x^T P_{\pi}^T = x^T P_{\pi^{-1}}$$

via the transpose map.



Another equilalence between left and right actions of permutations

Recall the two "canonical" ways label a Cayley graph for $S_3 = \langle (12), (23) \rangle$ with the set

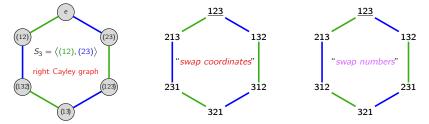
 $X = \{123, 132, 213, 231, 312, 321\}.$

In one, (*ij*) can be interpreted to mean

"swap the numbers in the i^{th} and j^{th} coordinates."

Alternatively, (ij) could mean

"swap the numbers i and j, regardless of where they are."



One of these is a right group action, and the other a left group action

Another equilalence between left and right actions of permutations

