Visual Algebra

Lecture 5.7: Transitive actions

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Classification of G-sets

Natural question

Given a group G, what are its possible (connected) G-sets?

For example, which of the following can arise as an orbit of an action by $G = D_4$?

Definition

An action $\phi: G \rightarrow \text{Perm}(S)$, and the G-set S, is

- transitive if it has only one orbit: ("graph is connected")
- **free** if $stab(s) = \langle e \rangle$ for all $s \in S$. ("uncollapsed no nontrivial loops")

a faithful if $\text{Ker}(\phi) = \langle e \rangle$. ("no broken buttons, except $1 \in G$ ")

In this language our question becomes: "classify all transitive G-actions" (or G-sets).

Transitive actions

Let's say that two *G*-actions are isomorphic if the corresponding *G*-sets are isomorphic.

Proposition

Every transitive *G*-action is isomorphic to *G* acting on a set of cosets by multiplication.

A connected action graph is a Cayley graph collapsed by right cosets of some subgroup.

collapse right cosets of H (an action)

We can *always* collapse by right cosets. We can collapse by left cosets iff H is normal.

The transitive D_4 -sets: collapsing by right cosets

Transitive actions

Proposition

Every transitive G-action is isomorphic to G acting on a set of cosets by multiplication.

 $\sigma: S \longrightarrow H \setminus G, \qquad \sigma: s.\phi(x) \longmapsto Hx$

Proof sketch. Let $\iota: G \to G$ be the identity, fix $s \in S$, let $H = \operatorname{stab}(s)$, and define

Show that σ is a well-defined bijection, and then the proof follows because:

Proposition

If $K = a^{-1}Ha$, then $H \setminus G$ and $K \setminus G$ are isomorphic G-sets.

Proposition

If $K = a^{-1}Ha$, then $H \setminus G$ and $K \setminus G$ are isomorphic *G*-sets.

Consider $H = \langle f \rangle$ and $K = r^{-1}Hr = \langle r^4f \rangle$. Define $\sigma \colon Hx \mapsto Kr^{-1}x$.

Proposition

If $K = a^{-1}Ha$, then $H \setminus G$ and $K \setminus G$ are isomorphic G-sets.

Proof

Define the map

$$\sigma\colon H\backslash G\longrightarrow K\backslash G, \qquad \sigma\colon Hx\longmapsto Ka^{-1}x.$$

We claim that this is a well-defined bijection, and commutes with $\phi(g)$:

<u>Well-defined</u>: Suppose Hx = Hy. Then $Hyx^{-1} = H$, so $yx^{-1} \in H$.

$$\sigma(Hx) = Ka^{-1}x = \underbrace{a^{-1}H}_{=Ka^{-1}} x = a^{-1}\underbrace{(Hyx^{-1})}_{=H} x = \underbrace{a^{-1}H}_{=Ka^{-1}} y = Ka^{-1}y = \sigma(Hy).$$

Proposition

If $K = a^{-1}Ha$, then the *G*-sets $H \setminus G$ and $K \setminus G$ are isomorphic.

Proof

Define the map

$$\sigma\colon H\backslash G\longrightarrow K\backslash G, \qquad \sigma\colon Hx\longmapsto Ka^{-1}x.$$

We claim that this is a well-defined bijection, and commutes with $\phi(g)$:

Injectivity: Suppose $\sigma(Hx) = \sigma(Hy)$. Then

$$\sigma(Hx) = \underbrace{Ka^{-1}}_{=a^{-1}H} x = a^{-1}Hx, \quad \text{and} \quad \sigma(Hy) = \underbrace{Ka^{-1}}_{=a^{-1}H} y = a^{-1}Hy,$$

and thus Hx = Hy. Surjectivity is straightforward.

Transitive actions

Big ideas

- Every transitive *G*-action is isomorphic to *G* acting on the cosets of stab(*s*).
- The action graph is constructed by collapsing by right cosets of stab(s).
- conjugates of stab(s) give the same G-set.

The transitive D_6 -sets: collapsing by right cosets

Subgroups of small index

Groups acting on cosets is a useful technique for establishing seemingly unrelated results.

Several of these involve showing that subgroups of "small index" are normal.

We've already seen that subgroups of index 2 are normal.

Of course, there are non-normal index-3 subgroups, like $\langle f \rangle \leq D_3$.

The following gives a sufficient condition for when index-3 subgroups are normal.

Proposition

If G has no subgroup of index 2, then any subgroup of index 3 is normal.

Proof

Let $H \leq G$ with [G:H] = 3.

Let G act on the cosets of H by multiplication, to get a nontrivial homomorphism

 $\phi: G \longrightarrow S_3.$

 $K := \text{Ker}(\phi) \leq H$ is the largest normal subgroup of G contained in H. By the FHT,

 $G/K \cong \operatorname{Im}(\phi) \leq S_3.$

Subgroups of small index

Proof (contin.)

Thus, there are three cases for this quotient:

$$G/K \cong S_3$$
, $G/K \cong C_3$, $G/K \cong C_2$.

Visually, this means that we have one of the following:

By the corrdespondence theorem, $K \leq H \leq G$ implies $K/K \leq H/K \leq G/K$.

Since G has no index-2 subgroup, only the middle case is possible (Why?).

This forces K/K = H/K, and so K = H, which is normal for multiple reasons.

Subgroups of small index

Proposition

Suppose $H \leq G$ and [G : H] = p, the smallest prime dividing |G|. Then $H \leq G$.

Proof

Let G act on the cosets of H by multiplication, to get a non-trivial homomorphism

$$\phi \colon G \longrightarrow S_p.$$

The kernel $K = \text{Ker}(\phi)$, is the largest normal subgroup of G such that $K \leq H \leq G$.

We'll show that H = K, or equivalently, that [H : K] = 1. By the correspondence theorem:

Do you see why q = 1?