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Classification of G-sets

Natural question
Given a group G, what are its possible (connected) G-sets? J

For example, which of the following can arise as an orbit of an action by G = D47

DHx oY

Definition

An action ¢: G — Perm(S), and the G-set S, is
m transitive if it has only one orbit: (“graph is connected’)
m free if stab(s) = (e) for all s € S. (“uncollapsed — no nontrivial loops")
m faithful if Ker(¢) = (e). (“no broken buttons, except 1 € G")

In this language our question becomes: “classify all transitive G-actions’ (or G-sets).
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Transitive actions

Let's say that two G-actions are isomorphic if the corresponding G-sets are isomorphic.

Proposition J

Every transitive G-action is isomorphic to G acting on a set of cosets by multiplication.

A connected action graph is a Cayley graph collapsed by right cosets of some subgroup.

collapse right cosets of H (an action)

We can always collapse by right cosets. We can collapse by left cosets iff H is normal.
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The transitive Dy4-sets: collapsing by right cosets
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Transitive actions

Proposition

Every transitive G-action is isomorphic to G acting on a set of cosets by multiplication.

Proof sketch. Let .: G — G be the identity, fix s € S, let H = stab(s), and define
0: S — H\G, o s.¢9(x) — Hx

s.¢(xg) <:> Hxg

/ /
o
_—

Show that o is a well-defined bijection, and then the proof follows because:

S L S s5.9(x) % s.9(xg)
A
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Conjugates of stab(s) give the same G-set

Proposition
If K= a 'Ha, then H\ G and K\ G are isomorphic G-sets.

Q

2, fr r?, fr? r fr3
Cr3,fr3 LFQO r3, fr 1, fr*
ré frt o > o, fr® r5 fr®
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Conjugates of stab(s) give the same G-set

Proposition
If K = a~'Ha, then H\ G and K\ G are isomorphic G-sets.

Consider H = (f) and K = r~ Hr = (r*f). Define o: Hx — Kr~1x.

@ o,%) @
o(f) } @

®
@.%L@
©
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Conjugates of stab(s) give the same G-set

Proposition
If K =a 'Ha, then H\ G and K\ G are isomorphic G-sets.

Proof

Define the map
o: H\G — K\ G, o: Hx — Ka x.

We claim that this is a well-defined bijection, and commutes with ¢(g):

HG —9 e LT
-1 -1
K\G W K\G Ka=*x W Ka Xg

Well-defined: Suppose Hx = Hy. Then Hyx 1 = H, so yx~! € H.

o(Hx) = Ka'x =a 'Hx=a'(Hyx ) x=a'Hy = Kaly = o(Hy).

=Ka-1 =H =Ka~!
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Conjugates of stab(s) give the same G-set

Proposition
If K = a~'Ha, then the G-sets H\ G and K\ G are isomorphic.

Proof

Define the map
o: H\G — K\ G, o: Hx — Ka x.

We claim that this is a well-defined bijection, and commutes with ¢(g):

HG —9 e Hx — 28, 1
K\G ——— K\G “1x —— Ka!
\G 5 K KX g K9
Injectivity: Suppose o(Hx) = o(Hy). Then
Hx) = Ka=! x = a~lHx, d Hy) = Ka=ly = a lHy,
o(Hx) a " x=a Hx an o(Hy) a “y=a Hy
=a~1H —a-1H

and thus Hx = Hy. Surjectivity is straightforward.

O0

v
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Transitive actions

Big ideas
m Every transitive G-action is isomorphic to G acting on the cosets of stab(s).
m The action graph is constructed by collapsing by right cosets of stab(s).

m conjugates of stab(s) give the same G-set.

s. ¢(r2) )
0 0"\

Oo
o{ orb (s }0
4 | o | @0

00/

H\G
H=stab(s)

\

0 0
s. ¢(r4) \-’70 Ys.(r%)
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The transitive Dg-sets: collapsing by right cosets
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Subgroups of small index
Groups acting on cosets is a useful technique for establishing seemingly unrelated results.
Several of these involve showing that subgroups of “small index” are normal.
We've already seen that subgroups of index 2 are normal.
Of course, there are non-normal index-3 subgroups, like (f) < Ds.

The following gives a sufficient condition for when index-3 subgroups are normal.

Proposition

If G has no subgroup of index 2, then any subgroup of index 3 is normal.

Proof

Let H < G with [G : H] = 3.

Let G act on the cosets of H by multiplication, to get a nontrivial homomorphism
¢: G —> Ss.

K := Ker(¢) < H is the largest normal subgroup of G contained in H. By the FHT,

G/K = Im(¢) < Ss.
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Subgroups of small index

Proof (contin.)

Thus, there are three cases for this quotient:

G/K=S;, G/K=GC,  G/KG.

Visually, this means that we have one of the following:

G/K

N/K \\ 3

A/K B/K C/K K/K
K/K

G/K

K/K

By the corrdespondence theorem, K < H < G implies K/K < H/K < G/K.

Since G has no index-2 subgroup, only the middle case is possible (Why?).

This forces K/K = H/K, and so K = H, which is normal for multiple reasons.
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Subgroups of small index

Proposition
Suppose H < G and [G : H] = p, the smallest prime dividing |G|. Then H < G.

Proof
Let G act on the cosets of H by multiplication, to get a non-trivial homomorphism

¢: G — Sp.
The kernel K = Ker(¢), is the largest normal subgroup of G such that K < H < G.
We'll show that H = K, or equivalently, that [H : K] = 1. By the correspondence theorem:
G G/K=S,

P P

H H/K

q is not divisible by any prime < p q divides (p — 1)!

K K/K

Do you see why g = 17 O

v
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