
Visual Algebra
Lecture 5.7: Transitive actions

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA

http://www.math.clemson.edu/~macaule/

M. Macauley (Clemson) Lecture 5.7: Transitive actions Visual Algebra 1 / 14

mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu


Classification of G -sets

Natural question
Given a group G , what are its possible (connected) G -sets?

For example, which of the following can arise as an orbit of an action by G = D4?

Definition
An action φ : G ! Perm(S), and the G -set S, is

transitive if it has only one orbit: (“graph is connected”)

free if stab(s) = 〈e〉 for all s ∈ S. (“uncollapsed – no nontrivial loops”)

faithful if Ker(φ) = 〈e〉. (“no broken buttons, except 1 ∈ G ”)

In this language our question becomes: “classify all transitive G-actions” (or G -sets).
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Transitive actions
Let’s say that two G -actions are isomorphic if the corresponding G -sets are isomorphic.

Proposition
Every transitive G -action is isomorphic to G acting on a set of cosets by multiplication.

A connected action graph is a Cayley graph collapsed by right cosets of some subgroup.
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collapse right cosets of H (an action)

We can always collapse by right cosets. We can collapse by left cosets iff H is normal.
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The transitive D4-sets: collapsing by right cosets

D4

〈r2, f 〉 〈r〉 〈r2,rf 〉

×2

〈f 〉 〈r2〉
×2

〈rf 〉

〈1〉
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Transitive actions

Proposition
Every transitive G -action is isomorphic to G acting on a set of cosets by multiplication.

Proof sketch. Let ι : G ! G be the identity, fix s ∈ S, let H = stab(s), and define

σ : S −! H\G , σ : s.φ(x) 7−! Hx
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Show that σ is a well-defined bijection, and then the proof follows because:
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Conjugates of stab(s) give the same G -set

Proposition

If K = a−1Ha, then H\G and K \G are isomorphic G -sets.
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Conjugates of stab(s) give the same G -set

Proposition

If K = a−1Ha, then H\G and K \G are isomorphic G -sets.

Consider H = 〈f 〉 and K = r−1Hr = 〈r4f 〉. Define σ : Hx 7! Kr−1x .
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Conjugates of stab(s) give the same G -set

Proposition

If K = a−1Ha, then H\G and K \G are isomorphic G -sets.

Proof
Define the map

σ : H\G −! K \ G , σ : Hx 7−! Ka−1x .

We claim that this is a well-defined bijection, and commutes with φ(g):

H\G H\G

K \G K \G

φ(g)

σ σ

φ(g)

Hx Hxg

Ka−1x Ka−1xg

φ(g)

σ σ

φ(g)

Well-defined: Suppose Hx = Hy . Then Hyx−1 = H, so yx−1 ∈ H.

σ(Hx) = Ka−1x = a−1H︸ ︷︷ ︸
=Ka−1

x = a−1 (Hyx−1)︸ ︷︷ ︸
=H

x = a−1H︸ ︷︷ ︸
=Ka−1

y = Ka−1y = σ(Hy).
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Conjugates of stab(s) give the same G -set

Proposition

If K = a−1Ha, then the G -sets H\G and K \G are isomorphic.

Proof
Define the map

σ : H\G −! K \ G , σ : Hx 7−! Ka−1x .

We claim that this is a well-defined bijection, and commutes with φ(g):

H\G H\G

K \G K \G

φ(g)

σ σ

φ(g)

Hx Hxg

Ka−1x Ka−1xg

φ(g)

σ σ

φ(g)

Injectivity: Suppose σ(Hx) = σ(Hy). Then

σ(Hx) = Ka−1︸ ︷︷ ︸
=a−1H

x = a−1Hx , and σ(Hy) = Ka−1︸ ︷︷ ︸
=a−1H

y = a−1Hy ,

and thus Hx = Hy . Surjectivity is straightforward. �
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Transitive actions

Big ideas
Every transitive G -action is isomorphic to G acting on the cosets of stab(s).

The action graph is constructed by collapsing by right cosets of stab(s).

conjugates of stab(s) give the same G -set.
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The transitive D6-sets: collapsing by right cosets

D6

〈r〉 〈r2, f 〉 〈r2, rf 〉

〈r3, f 〉
×3

〈r2〉

〈r3〉 〈f 〉
×3

〈rf 〉
×3

〈1〉
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Subgroups of small index
Groups acting on cosets is a useful technique for establishing seemingly unrelated results.

Several of these involve showing that subgroups of “small index” are normal.

We’ve already seen that subgroups of index 2 are normal.

Of course, there are non-normal index-3 subgroups, like 〈f 〉 ≤ D3.

The following gives a sufficient condition for when index-3 subgroups are normal.

Proposition
If G has no subgroup of index 2, then any subgroup of index 3 is normal.

Proof
Let H ≤ G with [G : H] = 3.

Let G act on the cosets of H by multiplication, to get a nontrivial homomorphism

φ : G −! S3.

K := Ker(φ) ≤ H is the largest normal subgroup of G contained in H. By the FHT,

G/K ∼= Im(φ) ≤ S3.
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Subgroups of small index

Proof (contin.)
Thus, there are three cases for this quotient:

G/K ∼= S3, G/K ∼= C3, G/K ∼= C2.

Visually, this means that we have one of the following:

G/K

N/K

K/K

A/K B/K C/K
3

3 3
3

2

2 2
2

G/K

K/K

3

G/K

K/K

2

By the corrdespondence theorem, K ≤ H � G implies K/K ≤ H/K � G/K .

Since G has no index-2 subgroup, only the middle case is possible (Why?).

This forces K/K = H/K , and so K = H, which is normal for multiple reasons. �
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Subgroups of small index

Proposition
Suppose H ≤ G and [G : H] = p, the smallest prime dividing |G |. Then H E G .

Proof
Let G act on the cosets of H by multiplication, to get a non-trivial homomorphism

φ : G −! Sp.

The kernel K = Ker(φ), is the largest normal subgroup of G such that K ≤ H � G .

We’ll show that H = K , or equivalently, that [H : K ] = 1. By the correspondence theorem:

G

H

K

p

q is not divisible by any prime < p

G/K ∼= Sp

H/K

K/K

p

q divides (p − 1)!

Do you see why q = 1? �
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