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A creative application of a group action

Cauchy’s theorem
If p is a prime dividing |G |, then G has an element (and hence a subgroup) of order p.

Proof
Let P be the set of ordered p-tuples of elements from G whose product is e:

(x1, x2, . . . , xp) ∈ P iff x1x2 · · · xp = e .

Observe that |P| = |G |p−1. (We can choose x1, . . . , xp−1 freely; then xp is forced.)

The group Zp acts on P by cyclic shift:

φ : Zp −! Perm(P), (x1, x2, . . . , xp)
φ(1)
7−! (x2, x3 . . . , xp, x1) .

The set P is partitioned into orbits, each of size | orb(s)| = [Zp : stab(s)] = 1 or p.

The only way that the orbit of (x1, x2, . . . , xp) can have size 1 is if x1 = · · · = xp.

Clearly, (e, . . . , e) ∈ P is a fixed point.

The |G |p−1 − 1 other elements in P sit in orbits of size 1 or p.

Since p - |G |p−1 − 1, there must be other orbits of size 1. Thus, some (x , . . . , x) ∈ P, with
x 6= e satisfies xp = e. �
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Classification of groups of order 6
By Cauchy’s theorem, every group of order 6 must have:

an element a of order 3

an element b of order 2.

Clearly, G = 〈a, b〉, and so G must have the following “partial Cayley graph”:
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It is now easy to see that up to isomorphism, there are only 2 groups of order 6:

C6 ∼= C2 × C3
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Exercise. Classify groups of order 8 with a similar argument.
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p-groups and the Sylow theorems

Definition
A p-group is a group whose order is a power of a prime p. A p-group that is a subgroup of
a group G is a p-subgroup of G .

Notational convention
Throughout, G will be a group of order |G | = pn ·m, with p - m. That is, pn is the highest
power of p dividing |G |.

There are three Sylow theorems, and loosely speaking, they describe the following about a
group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist.

2. Relationship: All maximal p-subgroups are conjugate.

3. Number: Strong restrictions on the number of p-subgroups a group can have.

Together, these place strong restrictions on the structure of a group G with a fixed order.
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The five groups of order 12

Sylow theorems:

p-subgroups come in “towers.”

2-subgroups are blue

3-subgroups are red.
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Normalizers of p-subgroups

Before we introduce the Sylow theorems, we need to better understand p-groups.

Recall that a p-group is any group of order pn. Examples, of 2-groups that we’ve seen
include C1, C4, V4, D4 and Q8, C8, C4 × C2, D8, SD8, Q16, SA8, DQ8,. . .

p-group Lemma
If a p-group G acts on a set S via φ : G ! Perm(S), then

|Fix(φ)| ≡p |S|.

Proof (sketch)

Suppose |G | = pn.

By the orbit-stabilizer theorem, the only
possible orbit sizes are 1, p, p2, . . . , pn.

Fix(φ) non-fixed points all in size-pk orbits

p elts

···
p3 elts

···
pi elts

p elts

··
·
p6 elts
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Normalizers of p-subgroups

Normalizer lemma, Part 1
If H is a p-subgroup of G , then

[NG (H) : H] ≡p [G : H] .

Approach:

Let H (not G !) act on the (right) cosets of H by (right) multiplication.

H Hx2 Hxk Hy1

Hy2

Hy3

...

. . .

Cosets of H in NG (H) are the fixed points

S is the set of cosets of H in G

Apply our lemma: |Fix(φ)| ≡p |S|.
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Proof of the Normalizer lemma

Normalizer lemma, Part 1
If H is a p-subgroup of G , then

[NG (H) : H] ≡p [G : H] .

Proof
Let S = H\G = {Hx | x ∈ G}. The group H acts on S by right-multiplication, via
φ : H ! Perm(S), where

φ(h) = the permutation sending each Hx to Hxh.

The fixed points of φ are the cosets Hx in the normalizer NG (H):

Hxh = Hx , ∀h ∈ H ⇐⇒ Hxhx−1 = H, ∀h ∈ H
⇐⇒ xhx−1 ∈ H, ∀h ∈ H
⇐⇒ x ∈ NG (H) .

Therefore, |Fix(φ)| = [NG (H) : H], and |S| = [G : H]. By our p-group Lemma,

|Fix(φ)| ≡p |S| =⇒ [NG (H) : H] ≡p [G : H]. �
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Normalizers of p-subgroups

Here is a picture of the action of the p-subgroup H (for p = 2) on the set S = H\G , from
the proof of the normalizer lemma.

Fix (φ)

The fixed points are the

cosets in NG (H)

Cosets not in NG (H) are in orbits

of order pi , for various i ≥ 1

H

Ha1

Ha2

Ha3

Hb1 Hb2

Hg1 Hg2

Hg7

Hg8

Hg9
Hg10

Hg11

Hg12

Hg13

Hg14

Hc1

Hc2

Hc3

Hc4

Hg3

Hg4

Hg5

Hg6

M. Macauley (Clemson) Lecture 5.10: Normalizers of p-subgroups Visual Algebra 9 / 12

mailto:macaule@clemson.edu


Normalizers of p-subgroups
Recall that H ≤ NG (H) (always), and H is fully unnormal if H = NG (H).

Normalizer lemma, Part 2

Suppose |G | = pnm, and H ≤ G with |H| = pi < pn. Then H � NG (H), and the index
[NG (H) : H] is a multiple of p.

H Hx2 Hxk Hy1

Hy2

Hy3

...

. . .

[NG (H) : H] > 1 cosets of H (a multiple of p)

[G : H] cosets of H (a multiple of p)

H is not “fully unnormal”:

H � NG (H) ≤ G

Important corollaries
p-groups cannot have any fully unnormal subgroups (i.e., H � NG (H)).

In any finite group, the only fully unnormal p-subgroups are maximal.
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Normalizers of p-subgroups

Let H be properly contained in a maximal p-subgroup P � G .

The normalizer of H must grow in P (and hence in G)

The normalizer of P need not grow in G .

H Ha

Hb

Hc

...

P

H � NP (H) ≤ NG (H)

xP

yP zP

P

it may happen that P = NG (P)

xP

yP zP
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Proof of the normalizer lemma

Normalizer lemma, Part 2

Suppose |G | = pnm, and H ≤ G with |H| = pi < pn. Then H � NG (H), and the index
[NG (H) : H] is a multiple of p.

Proof
Since H E NG (H), we can create the quotient map

π : NG (H) −! NG (H)/H , π : g 7−! gH .

The size of the quotient group is [NG (H) : H], the number of cosets of H in NG (H).

By the normalizer lemma Part 1, [NG (H) : H] ≡p [G : H]. By Lagrange’s theorem,

[NG (H) : H] ≡p [G : H] =
|G |
|H|

=
pnm
pi

= pn−im ≡p 0.

Therefore, [NG (H) : H] is a multiple of p, so NG (H) must be strictly larger than H. �
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