Visual Algebra

Lecture 5.10: Normalizers of *p*-subgroups

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

A creative application of a group action

Cauchy's theorem

If p is a prime dividing |G|, then G has an element (and hence a subgroup) of order p.

Proof

Let P be the set of ordered p-tuples of elements from G whose product is e:

$$(x_1, x_2, \ldots, x_p) \in P$$
 iff $x_1 x_2 \cdots x_p = e$.

Observe that $|P| = |G|^{p-1}$. (We can choose x_1, \ldots, x_{p-1} freely; then x_p is forced.) The group \mathbb{Z}_p acts on P by cyclic shift:

$$\phi \colon \mathbb{Z}_p \longrightarrow \mathsf{Perm}(P), \qquad (x_1, x_2, \dots, x_p) \stackrel{\phi(1)}{\longmapsto} (x_2, x_3, \dots, x_p, x_1).$$

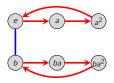
The set *P* is partitioned into orbits, each of size $|\operatorname{orb}(s)| = [\mathbb{Z}_p : \operatorname{stab}(s)] = 1$ or *p*. The only way that the orbit of (x_1, x_2, \ldots, x_p) can have size 1 is if $x_1 = \cdots = x_p$. Clearly, $(e, \ldots, e) \in P$ is a fixed point. The $|G|^{p-1} - 1$ other elements in *P* sit in orbits of size 1 or *p*. Since $p \nmid |G|^{p-1} - 1$, there must be other orbits of size 1. Thus, some $(x, \ldots, x) \in P$, with $x \neq e$ satisfies $x^p = e$.

Classification of groups of order 6

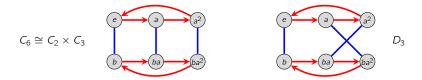
By Cauchy's theorem, every group of order 6 must have:

- an element *a* of order 3
- an element *b* of order 2.

Clearly, $G = \langle a, b \rangle$, and so G must have the following "partial Cayley graph":



It is now easy to see that up to isomorphism, there are only 2 groups of order 6:



Exercise. Classify groups of order 8 with a similar argument.

p-groups and the Sylow theorems

Definition

A *p*-group is a group whose order is a power of a prime *p*. A *p*-group that is a subgroup of a group *G* is a *p*-subgroup of *G*.

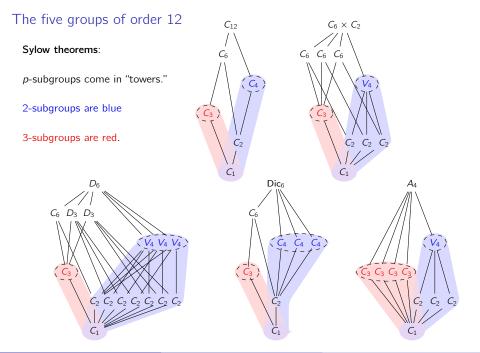
Notational convention

Throughout, G will be a group of order $|G| = p^n \cdot m$, with $p \nmid m$. That is, p^n is the highest power of p dividing |G|.

There are three Sylow theorems, and loosely speaking, they describe the following about a group's *p*-subgroups:

- 1. Existence: In every group, *p*-subgroups of all possible sizes exist.
- 2. Relationship: All maximal *p*-subgroups are conjugate.
- 3. Number: Strong restrictions on the number of *p*-subgroups a group can have.

Together, these place strong restrictions on the structure of a group G with a fixed order.



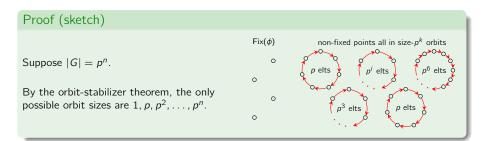
Before we introduce the Sylow theorems, we need to better understand *p*-groups.

Recall that a *p*-group is any group of order p^n . Examples, of 2-groups that we've seen include C_1 , C_4 , V_4 , D_4 and Q_8 , C_8 , $C_4 \times C_2$, D_8 , SD₈, Q_{16} , SA₈, DQ₈,...

p-group Lemma

If a *p*-group *G* acts on a set *S* via ϕ : $G \rightarrow \text{Perm}(S)$, then

$$|\operatorname{Fix}(\phi)| \equiv_p |S|.$$



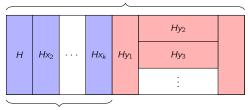
Normalizer lemma, Part 1

If H is a p-subgroup of G, then

 $[N_G(H)\colon H]\equiv_p [G\colon H].$

Approach:

Let H (not G!) act on the (right) cosets of H by (right) multiplication.



S is the set of cosets of H in G

Cosets of H in $N_G(H)$ are the fixed points

• Apply our lemma: $|Fix(\phi)| \equiv_p |S|$.

Proof of the Normalizer lemma

Normalizer lemma, Part 1

If H is a p-subgroup of G, then

 $[N_G(H)\colon H]\equiv_p [G\colon H].$

Proof

Let $S = H \setminus G = \{Hx \mid x \in G\}$. The group H acts on S by **right-multiplication**, via $\phi: H \to \text{Perm}(S)$, where

 $\phi(h)$ = the permutation sending each Hx to Hxh.

The fixed points of ϕ are the cosets Hx in the normalizer $N_G(H)$:

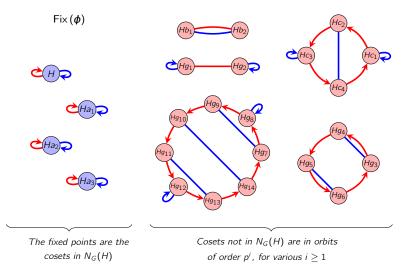
$$\begin{aligned} Hxh &= Hx, \quad \forall h \in H \qquad \Longleftrightarrow \qquad Hxhx^{-1} &= H, \quad \forall h \in H \\ &\iff \qquad xhx^{-1} \in H, \quad \forall h \in H \\ &\iff \qquad x \in N_G(H) \,. \end{aligned}$$

Therefore, $|Fix(\phi)| = [N_G(H): H]$, and |S| = [G: H]. By our *p*-group Lemma,

$$|\operatorname{Fix}(\phi)| \equiv_p |S| \implies [N_G(H): H] \equiv_p [G: H].$$

 \square

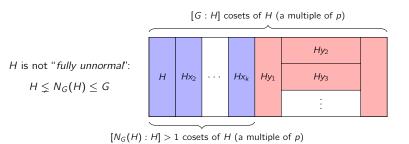
Here is a picture of the action of the *p*-subgroup *H* (for p = 2) on the set $S = H \setminus G$, from the proof of the normalizer lemma.



Recall that $H \leq N_G(H)$ (always), and H is fully unnormal if $H = N_G(H)$.

Normalizer lemma, Part 2

Suppose $|G| = p^n m$, and $H \le G$ with $|H| = p^i < p^n$. Then $H \lneq N_G(H)$, and the index $[N_G(H) : H]$ is a multiple of p.

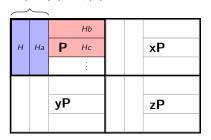


Important corollaries

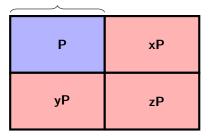
- **p**-groups cannot have any fully unnormal subgroups (i.e., $H \leq N_G(H)$).
- In *any* finite group, the only fully unnormal *p*-subgroups are maximal.

Let H be properly contained in a maximal p-subgroup $P \lneq G$.

- The normalizer of *H* must grow in *P* (and hence in *G*)
- The normalizer of *P* need not grow in *G*.



it may happen that $P = N_G(P)$



 $H \leq N_P(H) \leq N_G(H)$

Proof of the normalizer lemma

Normalizer lemma, Part 2

Suppose $|G| = p^n m$, and $H \le G$ with $|H| = p^i < p^n$. Then $H \lneq N_G(H)$, and the index $[N_G(H) : H]$ is a multiple of p.

Proof

Since $H \leq N_G(H)$, we can create the quotient map

$$\pi\colon N_G(H)\longrightarrow N_G(H)/H$$
, $\pi\colon g\longmapsto gH$.

The size of the quotient group is $[N_G(H): H]$, the number of cosets of H in $N_G(H)$.

By the normalizer lemma Part 1, $[N_G(H): H] \equiv_p [G: H]$. By Lagrange's theorem,

$$[N_G(H)\colon H] \equiv_p [G\colon H] = \frac{|G|}{|H|} = \frac{p^n m}{p^i} = p^{n-i} m \equiv_p 0.$$

Therefore, $[N_G(H): H]$ is a multiple of p, so $N_G(H)$ must be strictly larger than H.