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The Sylow theorems

Recall the following question that we asked earlier in this course.

Open-ended question
What group structural properties are possible, what are impossible, and how does this
depend on |G |?

One approach is to decompose large groups into “building block subgroups.” For example:

given a group of order 72 = 23 · 32, what can we say about its 2-subgroups and
3-subgroups?.

This is the idea behind the Sylow theorems, developed by Norwegian mathematician Peter
Sylow (1832–1918).

The Sylow theorems address the following questions of a finite group G :

1. How big are its p-subgroups?

2. How are the p-subgroups related?

3. How many p-subgroups are there?

4. What can we say about their conjugacy classes?
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An example: groups of order 12

The Sylow theorems can be used to classify
all groups of order 12.

We’ve already seen them all.

What patterns do you notice about the
2-groups and 3-groups, that might generalize
to all p-subgroups?
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The Sylow theorems

Notational convention
Througout, G will be a group of order |G | = pn ·m, with p - m.

That is, pn is the highest power of p dividing |G |.

A subgroup of order pn is called a Sylow p-subgroup.

Let Sylp(G) denote the set of Sylow p-subgroups, and np :=
∣∣Sylp(G)

∣∣.
There are three Sylow theorems, and loosely speaking, they describe the following about a
group’s p-subgroups:

1. Existence: In every group, p-subgroups of all possible sizes exist, and they’re “nested”.

2. Relationship: All maximal (“Sylow”) p-subgroups are conjugate.

3. Number: There are strong restrictions on np, the number of Sylow p-subgroups.

Together, these place strong restrictions on the structure of a group G with a fixed order.
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Our unknown group of order 12

Throughout, we will have a running example, a “mystery group” G of order 12 = 22 · 3.

We already know a little bit about G . By Cauchy’s theorem, it must have:

an element a of order 2, and

an element b of order 3.

|G |=12
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Using only the fact that |G | = 12, we will unconver as much about its structure as we can.
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The 1st Sylow theorem: existence of p-subgroups

First Sylow theorem

G has a subgroup of order pk , for each pk dividing |G |.

Also, every non-Sylow p-subgroup sits inside a larger p-subgroup.

Proof

Take any H ≤ G with |H| = pi < pn. We know H E NG (H) and p divides |NG (H)/H|.

Find an element aH of order p. The union of cosets in 〈aH〉 is a subgroup of order pi+1.

Order: pn ·m

pi+j · r

pi+1

pi

1

Order: pk−i · r

p

1

G

NG (H)

...

H ′

H

〈1〉

NG (H)/H
...

〈aH〉

H/H

M. Macauley (Clemson) Lecture 5.11: The first two Sylow theorems Visual Algebra 6 / 12

mailto:macaule@clemson.edu


Our unknown group of order 12

By the first Sylow theorem, 〈a〉 is contained in a subgroup of order 4, which could be V4 or
C4, or possibly both.
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The 2nd Sylow theorem: relationship among p-subgroups

Second Sylow theorem
Any two Sylow p-subgroups are conjugate (and hence isomorphic).

We’ll actually prove a stronger version, which easily implies the 2nd Sylow theorem.

Strong second Sylow theorem
Let H ∈ Syl(G), and K ≤ G any p-subgroup. Then K is conjugate to a subgroup of H.
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The 2nd Sylow theorem: All Sylow p-subgroups are conjugate

Strong second Sylow theorem
Let H be a Sylow p-subgroup, and K ≤ G any p-subgroup. Then K is conjugate to some
subgroup of H.

Proof
Let S = H\G = {Hg | g ∈ G}, the set of right cosets of H.

The group K acts on S by right-multiplication, via φ : K ! Perm(S), where

φ(k) = the permutation sending each Hg to Hgk.

A fixed point of φ is a coset Hg ∈ S such that

Hgk = Hg , ∀k ∈ K ⇐⇒ Hgkg−1 = H , ∀k ∈ K

⇐⇒ gkg−1 ∈ H , ∀k ∈ K

⇐⇒ gKg−1 ⊆ H.

Thus, if we can show that φ has a fixed point Hg, we’re done!

All we need to do is show that |Fix(φ)| 6≡p 0. By the p-group Lemma,

|Fix(φ)| ≡p |S| = [G : H] = m 6≡p 0. �

M. Macauley (Clemson) Lecture 5.11: The first two Sylow theorems Visual Algebra 9 / 12

mailto:macaule@clemson.edu


Our unknown group of order 12

By the second Sylow theorem, all Sylow p-subgroups are conjugate, and hence isomorphic.

This eliminates the following subgroup lattice of a group of order 12.

|G |=12

e•

b
•

b2

•

•
•

•
•

•

•

•

•

• a

G

C4 V4

C3 C3

C2 C2 C2

〈e〉

···

M. Macauley (Clemson) Lecture 5.11: The first two Sylow theorems Visual Algebra 10 / 12

mailto:macaule@clemson.edu


Example: A5 has no nontrival proper normal subgroups
A5
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The normalizer of the normalizer
Notice how in A5:

all Sylow p-subgroups are moderately unnormal

the normalizer of each Sylow p-subgroup is fully unnormal. That is:

NG (NG (P)) = NG (P)

Proposition
Let P be a non-normal Sylow p-subgroup of G . Then its normalizer is fully unnormal.

Proof
We’ll verify the equivalent statement of NG (NG (P)) = NG (P).

Note that P is a normal Sylow p-subgroup of NG (P).

By the 2nd Sylow theorem, P is the unique Sylow p-subgroup of NG (P).

Take an element x that normalizes NG (P) (i.e., x ∈ NG (NG (P)). We’ll show that it also
normalizes P. By definition, xNG (P)x−1 = NG (P), and so

P ≤ NG (P) =⇒ xPx−1 ≤ xNG (P)x−1 = NG (P).

But xPx−1 is also a Sylow p-subgroup of NG (P), and by uniqueness, xPx−1 = P. �
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