Visual Algebra

Lecture 5.11: The first two Sylow theorems

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

The Sylow theorems

Recall the following question that we asked earlier in this course.

Open-ended question

What group structural properties are possible, what are impossible, and how does this depend on |G|?

One approach is to decompose large groups into "building block subgroups." For example:

given a group of order $72 = 2^3 \cdot 3^2$, what can we say about its 2-subgroups and 3-subgroups?.

This is the idea behind the Sylow theorems, developed by Norwegian mathematician Peter Sylow (1832–1918).

The Sylow theorems address the following questions of a finite group G:

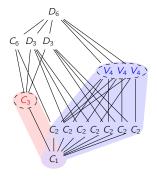
- 1. How big are its *p*-subgroups?
- 2. How are the *p*-subgroups related?
- 3. How many *p*-subgroups are there?
- 4. What can we say about their conjugacy classes?

An example: groups of order 12

The Sylow theorems can be used to classify all groups of order 12.

We've already seen them all.

What patterns do you notice about the 2-groups and 3-groups, that might generalize to all p-subgroups?



Lecture 5.11: The first two Sylow theorems

 C_1

Dic₆

 $(C_4 C_4 C_4)$

 C_{12}

(C4

 C_2

 C_1

 C_6

 C_3

 $C_6 \times C_2$

 C_2 C_2 C_2

 C_1

 V_4

 C_2 C_2 C_2

 A_4

 $(C_3 C_3 C_3 C_3)$

C₆ C₆ C₆

The Sylow theorems

Notational convention

Througout, G will be a group of order $|G| = p^n \cdot m$, with $p \nmid m$.

That is, p^n is the *highest power* of p dividing |G|.

A subgroup of order p^n is called a Sylow *p*-subgroup.

Let $\operatorname{Syl}_p(G)$ denote the set of Sylow *p*-subgroups, and $n_p := |\operatorname{Syl}_p(G)|$.

There are three Sylow theorems, and loosely speaking, they describe the following about a group's *p*-subgroups:

- 1. Existence: In every group, p-subgroups of all possible sizes exist, and they're "nested'.
- 2. Relationship: All maximal ("Sylow") p-subgroups are conjugate.
- 3. Number: There are strong restrictions on n_p , the number of Sylow *p*-subgroups.

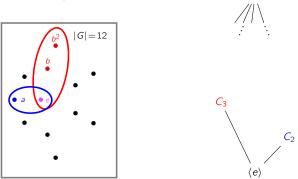
Together, these place strong restrictions on the structure of a group G with a fixed order.

Our unknown group of order 12

Throughout, we will have a running example, a "mystery group" G of order $12 = 2^2 \cdot 3$. We already know a little bit about G. By Cauchy's theorem, it must have:

G

- an element *a* of order 2, and
- an element *b* of order 3.



Using only the fact that |G| = 12, we will unconver as much about its structure as we can.

The 1^{st} Sylow theorem: existence of *p*-subgroups

First Sylow theorem

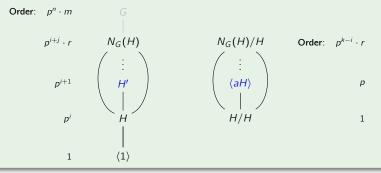
G has a subgroup of order p^k , for each p^k dividing |G|.

Also, every non-Sylow *p*-subgroup sits inside a larger *p*-subgroup.

Proof

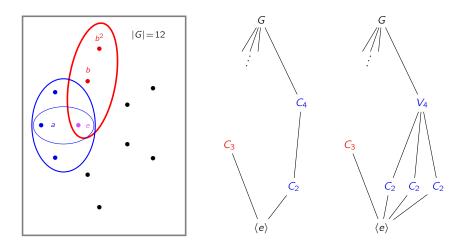
Take any $H \leq G$ with $|H| = p^i < p^n$. We know $H \leq N_G(H)$ and p divides $|N_G(H)/H|$.

Find an element aH of order p. The union of cosets in $\langle aH \rangle$ is a subgroup of order p^{i+1} .



Our unknown group of order 12

By the first Sylow theorem, $\langle a \rangle$ is contained in a subgroup of order 4, which could be V_4 or C_4 , or possibly both.



The 2nd Sylow theorem: relationship among *p*-subgroups

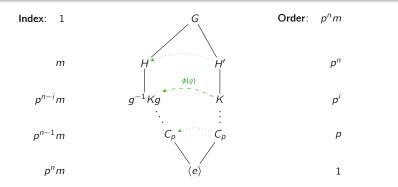
Second Sylow theorem

Any two Sylow *p*-subgroups are conjugate (and hence isomorphic).

We'll actually prove a stronger version, which easily implies the 2nd Sylow theorem.

Strong second Sylow theorem

Let $H \in Syl(G)$, and $K \leq G$ any *p*-subgroup. Then K is conjugate to a subgroup of H.



The 2nd Sylow theorem: All Sylow *p*-subgroups are conjugate

Strong second Sylow theorem

Let H be a Sylow p-subgroup, and $K \leq G$ any p-subgroup. Then K is conjugate to some subgroup of H.

Proof

Let $S = H \setminus G = \{Hg \mid g \in G\}$, the set of right cosets of H.

The group K acts on S by right-multiplication, via $\phi: K \to \text{Perm}(S)$, where

 $\phi(k)$ = the permutation sending each Hg to Hgk.

A fixed point of ϕ is a coset $Hg \in S$ such that

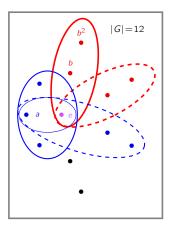
Thus, if we can show that ϕ has a fixed point Hg, we're done!

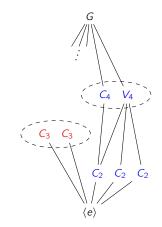
All we need to do is show that $|Fix(\phi)| \neq_p 0$. By the *p*-group Lemma,

 $|\operatorname{Fix}(\phi)| \equiv_p |S| = [G:H] = m \not\equiv_p 0.$

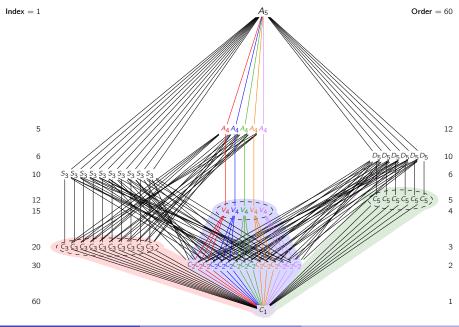
Our unknown group of order 12

By the second Sylow theorem, all Sylow *p*-subgroups are conjugate, and hence isomorphic. This eliminates the following subgroup lattice of a group of order 12.





Example: A_5 has no nontrival proper normal subgroups



The normalizer of the normalizer

Notice how in A_5 :

- all Sylow p-subgroups are moderately unnormal
- the normalizer of each Sylow *p*-subgroup is fully unnormal. That is:

 $N_G(N_G(P)) = N_G(P)$

Proposition

Let P be a non-normal Sylow p-subgroup of G. Then its normalizer is fully unnormal.

Proof

We'll verify the equivalent statement of $N_G(N_G(P)) = N_G(P)$.

Note that *P* is a normal Sylow *p*-subgroup of $N_G(P)$.

By the 2nd Sylow theorem, P is the unique Sylow p-subgroup of $N_G(P)$.

Take an element x that normalizes $N_G(P)$ (i.e., $x \in N_G(N_G(P))$). We'll show that it also normalizes P. By definition, $xN_G(P)x^{-1} = N_G(P)$, and so

$$P \leq N_G(P) \implies xPx^{-1} \leq xN_G(P)x^{-1} = N_G(P).$$

But xPx^{-1} is also a Sylow *p*-subgroup of $N_G(P)$, and by uniqueness, $xPx^{-1} = P$.