Visual Algebra

Lecture 5.12: The third Sylow theorem and simple groups

Dr. Matthew Macauley

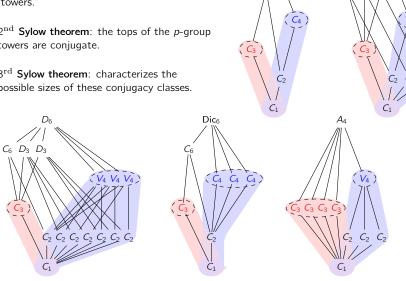
School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Summary of the Sylow theorems

1st Sylow theorem: p-subgroups come in "towers."

 2^{nd} Sylow theorem: the tops of the *p*-group towers are conjugate.

3rd Sylow theorem: characterizes the possible sizes of these conjugacy classes.



 C_{12}

 $C_6 \times C_2$

 C_6 C_6 C_6

The 3^{rd} Sylow theorem: number of Sylow *p*-subgroups

Third Sylow theorem

Let n_p be the number of Sylow p-subgroups of G. Then

$$n_p$$
 divides $|G|$ and $n_p \equiv_p 1$.

(Note that together, these imply that $n_p \mid m$, where $|G| = p^n \cdot m$.)

Proof

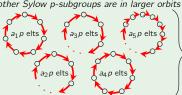
Take
$$H \in \operatorname{Syl}_p(G)$$
. By the 2nd Sylow theorem, $n_p = |\operatorname{cl}_G(H)| = [G : N_G(H)] | |G|$.

The subgroup H acts on $S = Syl_p(G)$ by conjugation, via $\phi \colon G \to Perm(S)$, where

$$\phi(h)$$
 = the permutation sending each K to $h^{-1}Kh$.

Goal: show that H is the unique fixed point.

$$|\operatorname{Fix}(\phi)|=1$$
 other Sylow p-subgroups are in larger orbits



total # Sylow p-subgroups $= n_p = |S| \equiv_p |\operatorname{Fix}(\phi)|$

The 3^{rd} Sylow theorem: number of Sylow *p*-subgroups

Proof (cont.)

Goal: show that H is the unique fixed point.

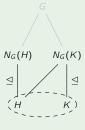
Let $K \in Fix(\phi)$. Then $K \leq G$ is a Sylow p-subgroup satisfying

$$h^{-1}Kh = K$$
, $\forall h \in H \iff H \leq N_G(K) \leq G$.

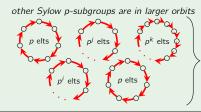
- H and K are p-Sylow in G, and in $N_G(K)$.
- H and K are conjugate in $N_G(K)$. (2nd Sylow thm.)
- $K \leq N_G(K)$, thus is only conjugate to itself in $N_G(K)$.

Thus, K = H. That is, $Fix(\phi) = \{H\}$.

By the *p*-group Lemma, $n_p := |S| \equiv_p |\operatorname{Fix}(\phi)| = 1$.



 $|\operatorname{Fix}(\phi)| = 1$



total # Sylow *p*-subgroups = $n_p = |S| \equiv_p |\operatorname{Fix}(\phi)| = 1$

Summary of the proofs of the Sylow theorems

For the 1st Sylow theorem, we started with $H = \{e\}$, and inductively created larger subgroups of size p, p^2, \ldots, p^n .

For the $2^{\rm nd}$ and $3^{\rm rd}$ Sylow theorems, we used a clever group action and then applied one or both of the following:

- (i) orbit-stabilizer theorem. If G acts on S, then $|\operatorname{orb}(s)| \cdot |\operatorname{stab}(s)| = |G|$.
- (ii) *p-group lemma*. If a *p*-group acts on *S*, then $|S| \equiv_p |\operatorname{Fix}(\phi)|$.

To summarize, we used:

- S2 The action of $K \in \operatorname{Syl}_p(G)$ on $S = H \setminus G$ by right multiplication for some other $H \in \operatorname{Syl}_p(G)$.
- S3a The action of G on $S = Syl_p(G)$, by conjugation.
- S3b The action of $H \in Syl_p(G)$ on $S = Syl_p(G)$, by conjugation.

Our mystery group order 12

By the 3rd Sylow theorem, every group G of order $12 = 2^2 \cdot 3$ must have:

 \blacksquare n_3 Sylow 3-subgroups, each of order 3.

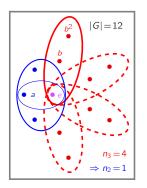
$$n_3 \mid 4$$
, $n_3 \equiv 1 \pmod{3}$ \Longrightarrow $n_3 = 1 \text{ or } 4$.

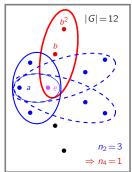
■ n_2 Sylow 2-subgroups of order $2^2 = 4$.

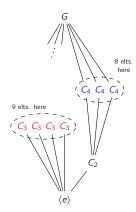
$$n_2 \mid 3$$
, $n_2 \equiv 1 \pmod{2}$ \Longrightarrow $n_2 = 1 \text{ or } 3$.

$$n_2 = 1 \text{ or } 3$$

But both are not possible! (There aren't enough elements.)



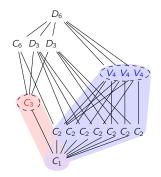


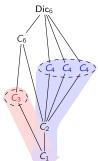


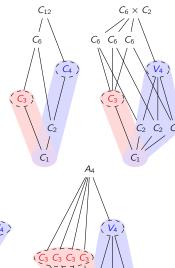
Classification of groups of order 12

$$P = C_4 \text{ or } V_4, \ Q = C_3$$

- Case 1: $n_2 = 1$, $n_3 = 1$.
- **Case 2**: $n_2 = 1$, $n_3 = 4$.
- Case 3: $n_2 = 3$, $n_3 = 1$.







 C_2 C_2 C_2

Simple groups and the Sylow theorems

Definition

A group G is simple if its only normal subgroups are G and $\langle e \rangle$.

Simple groups are to groups what primes are to integers, and are essential to understand.

The Sylow theorems are very useful for establishing statements like:

"There are no simple groups of order k (for some k)."

Since all Sylow *p*-subgroups are conjugate, the following result is immediate.

Remark

A Sylow *p*-subgroup is normal in G iff it's the unique Sylow *p*-subgroup (that is, if $n_p = 1$).

Thus, if we can show that $n_p = 1$ for some p dividing |G|, then G cannot be simple.

For some |G|, this is harder than for others, and sometimes it's not possible.

Tip

When trying to show that $n_p = 1$, it's usually helpful to analyze the largest primes first.

An easy example

We'll see three examples of showing that groups of a certain size cannot be simple, in successive order of difficulty.

Then we'll see several that I will leave as exercises.

Proposition

There are no simple groups of order 84.

Proof

Since $|G| = 84 = 2^2 \cdot 3 \cdot 7$, the third Sylow theorem tells us:

- n_7 divides $2^2 \cdot 3 = 12$ (so $n_7 \in \{1, 2, 3, 4, 6, 12\}$)
- $n_7 \equiv_7 1$.

The only possibility is that $n_7 = 1$, so the Sylow 7-subgroup must be normal.

Observe why it is beneficial to use the largest prime first:

- n_3 divides $2^2 \cdot 7 = 28$ and $n_3 \equiv_3 1$. Thus $n_3 \in \{1, 2, 4, 7, 14, 28\}$.
- n_2 divides $3 \cdot 7 = 21$ and $n_2 \equiv_2 1$. Thus $n_2 \in \{1, 3, 7, 21\}$.

A harder example

Proposition

There are no simple groups of order 351.

Proof

Since $|G| = 351 = 3^3 \cdot 13$, the third Sylow theorem tells us:

- n_{13} divides $3^3 = 27$ (so $n_{13} \in \{1, 3, 9, 27\}$)
- $n_{13} \equiv_{13} 1$.

The only possibilies are $n_{13} = 1$ or 27.

A Sylow 13-subgroup P has order 13, and a Sylow 3-subgroup Q has order $3^3=27$. Therefore, $P\cap Q=\{e\}$.

Suppose $n_{13} = 27$. Every Sylow 13-subgroup contains 12 non-identity elements, and so G must contain $27 \cdot 12 = 324$ elements of order 13.

This leaves 351 - 324 = 27 elements in G not of order 13. Thus, G contains only one Sylow 3-subgroup (i.e., $n_3 = 1$) and so G cannot be simple.

Another example

Proposition

There are no simple groups of order $24 = 2^3 \cdot 3$.

From the 3rd Sylow theorem, we can only conclude that $n_2 \in \{1, 3\}$ and $n_3 = \{1, 4\}$.

Let H be a Sylow 2-subgroup, which has relatively "small" index: [G:H]=3.

Lemma

If G has a subgroup of index [G : H] = n, and |G| does not divide n!, then G is not simple.

Proof

Let G act on the right cosets of H (i.e., $S = H \setminus G$) by right-multiplication:

$$\phi\colon G\longrightarrow \mathsf{Perm}(S)\cong S_n$$
 , $\phi(g)=$ the permutation that sends each Hx to Hxg .

Recall that $Ker(\phi) \leq G$, and is the intersection of all conjugate subgroups of H:

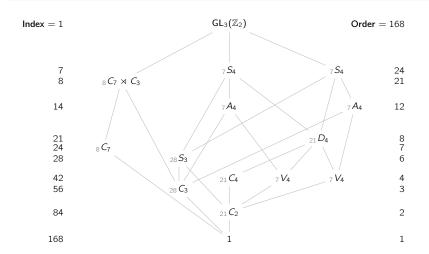
$$\langle e \rangle \leq \operatorname{Ker}(\phi) = \bigcap_{x \in G} x^{-1} Hx \lneq G$$

If $Ker(\phi) = \langle e \rangle$ then $\phi \colon G \hookrightarrow S_n$ is an embedding, which is impossible because $|G| \nmid n!$.

The second smallest non-abelian simple group

Exercise

Show that the simple group $G = GL_3(\mathbb{Z}_2)$ of order 168 is a subgroup of A_8 .



A_6 : the third smallest non-abelian simple group

Exercise

Prove that there are no simple groups of order $90 = 2 \cdot 3^2 \cdot 5$.

