Visual Algebra

Lecture 8.1: Rings and their substructures

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

What is a ring?

A group is a set with a binary operation, satisfying a few basic properties.

Many algebraic structures (numbers, matrices, functions) have two binary operations.

Definition

A ring is an additive (abelian) group R with an additional associative binary operation (multiplication), satisfying the distributive law:

x(y+z) = xy + xz and (y+z)x = yx + zx $\forall x, y, z \in R$.

Remarks

- There need not be multiplicative inverses.
- Multiplication need not be commutative (it may happen that $xy \neq yx$).

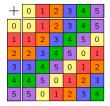
A few more definitions

If xy = yx for all $x, y \in R$, then R is commutative.

If R has a multiplicative identity $1 = 1_R \neq 0$, we say that "R has identity" or "unity", or "R is a ring with 1."

The four rings of order 6

The additive group \mathbb{Z}_6 is a ring, where multiplication is defined modulo 6.



\times	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

However, this is not the only way to add a ring structure to $(\mathbb{Z}_6, +)$.

\times	0	а	2 <i>a</i>	3 <i>a</i>	4 <i>a</i>	5 <i>a</i>		Х	0	а	2 <i>a</i>	3 <i>a</i>	4 <i>a</i>	5 <i>a</i>	\times	0	а	2 <i>a</i>	3 <i>a</i>
0	0	0	0	0	0	0] [0	0	0	0	0	0	0	0	0	0	0	0
а	0	0	0	0	0	0		а	0	4 <i>a</i>	2 <i>a</i>	0	4 <i>a</i>	2 <i>a</i>	а	0	3 <i>a</i>	0	3 <i>a</i>
2 <i>a</i>	0	0	0	0	0	0		2 <i>a</i>	0	2 <i>a</i>	4 <i>a</i>	0	2 <i>a</i>	4 <i>a</i>	2 <i>a</i>	0	0	0	0
За	0	0	0	0	0	0		3 <i>a</i>	0	0	0	0	0	0	3 <i>a</i>	0	3 <i>a</i>	0	3 <i>a</i>
4 <i>a</i>	0	0	0	0	0	0		4 <i>a</i>	0	4 <i>a</i>	2 <i>a</i>	0	4 <i>a</i>	2 <i>a</i>	4 <i>a</i>	0	0	0	0
5 <i>a</i>	0	0	0	0	0	0		5 <i>a</i>	0	2 <i>a</i>	4 <i>a</i>	0	2 <i>a</i>	4 <i>a</i>	5 <i>a</i>	0	3a	0	3 <i>a</i>

These last three rings do not have unity. We can view them as subrings:

 $\langle 6 \rangle \cong 6\mathbb{Z}_6 \subseteq \mathbb{Z}_{36}, \qquad \qquad \langle 2 \rangle \cong 2\mathbb{Z}_6 \subseteq \mathbb{Z}_{12}, \qquad \qquad \langle 3 \rangle \cong 3\mathbb{Z}_6 \subseteq \mathbb{Z}_{18}.$

3a 0 3a 0

Subgroups, subrings, and ideals

If an (additive) subgroup of $S \subseteq R$ is closed under multiplication, it is a subring.

The analogue of normal subgroups for rings are (two-sided) ideals.

Definition A subring $I \subseteq R$ is a left ideal if $rx \in I$ for all $r \in R$ and $x \in I$. Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write $I \leq R$.

Examples

In the ring $R = \mathbb{Z}[x]$ of polynomials over \mathbb{Z} :

- the subgroup generated by 2 is $\langle 2 \rangle = 2\mathbb{Z}$.
- the ideal generated by 2 is

 $(2) := \{2f(x) \mid f \in \mathbb{Z}[x]\} = \{2a_nx^n + \cdots + 2a_1x + 2a_0 \mid f \in \mathbb{Z}[x]\}.$

A familiar example

Consider the ring $R = \mathbb{Z}_3^2 = \{ab \mid a, b \in \mathbb{Z}_3\}.$

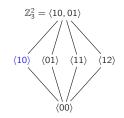
We know that the following map is a group homomorphism:

$$\phi: \mathbb{Z}_3^2 \to \mathbb{Z}_3, \qquad \phi(ab) = b$$

The table below (right) shows it's also a ring homomorphism.

Do you see why $\langle 10 \rangle$ is an ideal?

+	00	10	20	01	11	21	02	12	22
00	00	10	20	01	11	21	02	12	22
10	10	-0	00	11	-21	01	12	-2	02
20	20	00	10	21	01	11	22	02	12
01	01	11	21	02	12	22	00	10	20
11	11	-21	01	12	-2	02	10	-0	00
21	21	01	11	22	02	12	20	00	10
02	02	12	22	00	10	20	01	11	21
12	12	-2	02	10	-0	00	11	-21	01
22	22	02	12	20	00	10	21	01	11

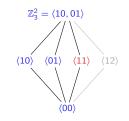


×	00	10	20	01	11	21	02	12	22
00	00	00	00	00	00	00	00	00	00
10	00	-0	20	00	-0	20	00	-0	20
20	00	20	10	00	20	10	00	20	10
01	00	00	00	01	01	01	02	02	02
11	00	-0	20	01	-1	21	02	-2	22
21	00	20	10	01	21	11	02	22	12
02	00	00	00	02	02	02	01	01	01
12	00	-0	20	02	-2	22	01	-1	21
22	00	20	10	02	22	12	01	21	11

Different types of substructures

Let's consider two other subgroups of $R = \mathbb{Z}_3^2$.

- The subgroup $\langle 11 \rangle$ is a subring but not an ideal.
- The subgroup $\langle 12 \rangle$ is a not even a subring.



\times	00	11	22	12	21	10	20	01	02
00	00	00	00	00	00	00	00	00	00
11	00	11	22	12	21	10	20	01	02
22	00	22	11	21	12	20	10	02	01
12	00	12	21	11	22	10	20	01	02
21	00	21	12	22	11	20	10	02	01
10	00	10	20	10	20	10	20	00	00
20	00	20	10	20	10	20	10	00	00
01	00	01	02	02	01	00	00	01	02
02	00	02	01	01	02	00	00	02	01

×	00	12	21	10	22	01	11	20	02
00	00	00	00	00	00	00	00	00	00
12	00	11	22	10	21	02	12	20	01
21	00	22	11	20	12	01	21	10	02
10	00	10	20	10	20	00	10	20	00
22	00	21	12	20	11	02	22	10	01
01	00	02	01	00	02	01	01	00	02
11	00	12	21	10	22	01	11	20	02
20	00	20	10	20	10	00	20	10	00
02	00	01	02	00	01	02	02	00	01

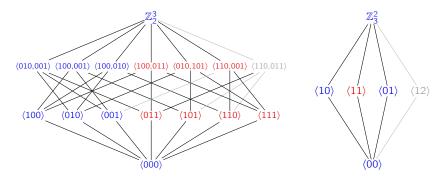
Subring lattices

Like we did with groups, we can create the subring lattice of a (finite) ring.

Start with the **subgroup lattice**, and color-code the subgroups of R as follows:

- 1. Blue: an ideal,
- 2. Red: a subring that is not an ideal,
- 3. faded: a subgroup that is not subring.

Technically, we shouldn't have non-subrings, but it's nice to include them.



Ideals generated by sets

Definition

The left ideal generated by a set $X \subset R$ is defined as:

```
(X) := \bigcap \{I : I \text{ is a left ideal s.t. } X \subseteq I \subseteq R\}.
```

This is the smallest left ideal containing X.

There are analogous definitions by replacing "left" with "right" or "two-sided".

Recall the two ways to define the subgroup $\langle X \rangle$ generated by a subset $X \subseteq G$:

- "Bottom up": As the set of all finite products of elements in X;
- "*Top down*": As the intersection of all subgroups containing X.

Proposition (HW)

Let R be a ring with 1. The (left, right, two-sided) ideal generated by $X \subseteq R$ is:

- Left: $\{r_1x_1 + \cdots + r_nx_n : n \in \mathbb{N}, r_i \in \mathbb{R}, x_i \in X\},\$
- **Right:** $\{x_1r_1 + \cdots + x_nr_n : n \in \mathbb{N}, r_i \in \mathbb{R}, x_i \in X\},\$
- Two-sided: $\{r_1x_1s_1 + \cdots + r_nx_ns_n : n \in \mathbb{N}, r_i, s_i \in R, x_i \in X\}.$

Ideals in rings without unity

Proposition

Let R be a commutative rng (=need not have unity). Then

$$\{r_1x_1+\cdots+r_nx_n\mid n\in\mathbb{N}, r_i\in R, x_i\in X\}\subseteq \bigcap_{X\subseteq I_\alpha\subseteq R}I_\alpha.$$

Perhaps surprisingly, equality above need not hold!

Consider the following polynomial ring:

$$R = 2\mathbb{Z}[x] = \left\{a_0 + a_1x + \dots + a_nx^n \mid a_i \in 2\mathbb{Z}, n \in \mathbb{N}\right\}$$
$$= \left\{2c_0 + 2c_1x + \dots + 2c_nx^n \mid c_i \in \mathbb{Z}, n \in \mathbb{N}\right\}.$$

Since the ideal (2) contains 2 by definition,

$$\left\{2f(x) \mid f(x) \in 2\mathbb{Z}[x]\right\} = \left\{4c_0 + 4c_1x + \dots + 4c_nx^n \mid c_i \in \mathbb{Z}, n \in \mathbb{N}\right\} \subsetneq (2).$$

Similarly, the ideal (2, 2x) contains 2 and 2x, and so

$$\left\{2f(x)+2xg(x)\mid f(x)\in 2\mathbb{Z}[x]\right\}=\left\{4c_0+4c_1x+\cdots+4c_nx^n\mid c_i\in\mathbb{Z},\ n\in\mathbb{N}\right\}\subsetneq (2,2x).$$

Ideals generated by sets

As we did with groups, if $S = \{x\}$, we can write (x) rather than ({x}), etc. Let's see some examples of ideals in $R = \mathbb{Z}[x]$.

$$(x) = \{xf(x) \mid f \in \mathbb{Z}[x]\} = \{a_n x^n + \dots + a_1 x \mid a_i \in \mathbb{Z}\}.$$
$$(2) = \{2f(x) \mid f \in \mathbb{Z}[x]\} = \{2a_n x^n + \dots + 2a_1 x + 2a_0 \mid a_i \in \mathbb{Z}\}.$$
$$(x, 2) = \{xf(x) + 2g(x) \mid f, g \in \mathbb{Z}[x]\} = \{a_n x^n + \dots + a_1 x + 2a_0 \mid a_i \in \mathbb{Z}\}.$$

Notice that we have

$$(x) \subsetneq (x, 2) \subsetneq R$$
, and $(2) \subsetneq (x, 2) \subsetneq R$.

The ideal (x, 2) is said to be maximal, because there is nothing "between" it and R.

Question

How different would these ideals be in the ring $R = \mathbb{Q}[x]$?