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What is a ring?

A group is a set with a binary operation, satisfying a few basic properties.

Many algebraic structures (numbers, matrices, functions) have two binary operations.

Definition
A ring is an additive (abelian) group R with an additional associative binary operation
(multiplication), satisfying the distributive law:

x(y + z) = xy + xz and (y + z)x = yx + zx ∀x , y , z ∈ R .

Remarks
There need not be multiplicative inverses.

Multiplication need not be commutative (it may happen that xy 6= yx).

A few more definitions
If xy = yx for all x , y ∈ R, then R is commutative.

If R has a multiplicative identity 1 = 1R 6= 0, we say that “R has identity” or “unity”, or “R
is a ring with 1.”
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The four rings of order 6
The additive group Z6 is a ring, where multiplication is defined modulo 6.
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However, this is not the only way to add a ring structure to (Z6,+).
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These last three rings do not have unity. We can view them as subrings:

〈6〉 ∼= 6Z6 ⊆ Z36, 〈2〉 ∼= 2Z6 ⊆ Z12, 〈3〉 ∼= 3Z6 ⊆ Z18.
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Subgroups, subrings, and ideals

If an (additive) subgroup of S ⊆ R is closed under multiplication, it is a subring.

The analogue of normal subgroups for rings are (two-sided) ideals.

Definition
A subring I ⊆ R is a left ideal if

rx ∈ I for all r ∈ R and x ∈ I .

Right ideals, and two-sided ideals are defined similarly.

If R is commutative, then all left (or right) ideals are two-sided.

We use the term ideal and two-sided ideal synonymously, and write I E R.

Examples
In the ring R = Z[x ] of polynomials over Z:

the subgroup generated by 2 is 〈2〉 = 2Z.
the ideal generated by 2 is

(2) :=
{
2f (x) | f ∈ Z[x ]

}
=
{
2anxn + · · ·+ 2a1x + 2a0 | f ∈ Z[x ]

}
.

M. Macauley (Clemson) Lecture 8.1: Rings and theier substructures Visual Algebra 4 / 10

mailto:macaule@clemson.edu


A familiar example
Consider the ring R = Z23 =

{
ab | a, b ∈ Z3

}
.

We know that the following map is a group homomorphism:

φ : Z23 ! Z3, φ(ab) = b.

The table below (right) shows it’s also a ring homomorphism.

Do you see why 〈10〉 is an ideal?

Z23 = 〈10, 01〉

〈10〉 〈01〉 〈11〉 〈12〉

〈00〉
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Different types of substructures

Let’s consider two other subgroups of R = Z23.

The subgroup 〈11〉 is a subring but not an ideal.

The subgroup 〈12〉 is a not even a subring.

Z23 = 〈10, 01〉

〈10〉 〈01〉 〈11〉 〈12〉
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Subring lattices

Like we did with groups, we can create the subring lattice of a (finite) ring.

Start with the subgroup lattice, and color-code the subgroups of R as follows:

1. Blue: an ideal,

2. Red: a subring that is not an ideal,

3. faded: a subgroup that is not subring.

Technically, we shouldn’t have non-subrings, but it’s nice to include them.

Z32

〈010,001〉 〈100,001〉 〈100,010〉 〈100,011〉 〈010,101〉 〈110,001〉 〈110,011〉

〈100〉 〈010〉 〈001〉 〈011〉 〈101〉 〈110〉 〈111〉

〈000〉

Z23

〈10〉 〈11〉 〈01〉 〈12〉

〈00〉
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Ideals generated by sets

Definition
The left ideal generated by a set X ⊂ R is defined as:

(X ) :=
⋂ {

I : I is a left ideal s.t. X ⊆ I ⊆ R
}
.

This is the smallest left ideal containing X .

There are analogous definitions by replacing “left” with “right” or “two-sided”.

Recall the two ways to define the subgroup 〈X 〉 generated by a subset X ⊆ G :

“Bottom up”: As the set of all finite products of elements in X ;

“Top down”: As the intersection of all subgroups containing X .

Proposition (HW)

Let R be a ring with 1. The (left, right, two-sided) ideal generated by X ⊆ R is:

Left:
{
r1x1 + · · ·+ rnxn : n ∈ N, ri ∈ R, xi ∈ X

}
,

Right:
{
x1r1 + · · ·+ xnrn : n ∈ N, ri ∈ R, xi ∈ X

}
,

Two-sided:
{
r1x1s1 + · · ·+ rnxnsn : n ∈ N, ri , si ∈ R, xi ∈ X

}
.
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Ideals in rings without unity

Proposition
Let R be a commutative rng (=need not have unity). Then{

r1x1 + · · ·+ rnxn | n ∈ N, ri ∈ R, xi ∈ X
}
⊆

⋂
X⊆IαER

Iα.

Perhaps surprisingly, equality above need not hold!

Consider the following polynomial ring:

R = 2Z[x ] =
{
a0 + a1x + · · ·+ anxn | ai ∈ 2Z, n ∈ N

}
=
{
2c0 + 2c1x + · · ·+ 2cnxn | ci ∈ Z, n ∈ N

}
.

Since the ideal (2) contains 2 by definition,{
2f (x) | f (x) ∈ 2Z[x ]

}
=
{
4c0 + 4c1x + · · ·+ 4cnxn | ci ∈ Z, n ∈ N

}
( (2).

Similarly, the ideal (2, 2x) contains 2 and 2x , and so{
2f (x) + 2xg(x) | f (x) ∈ 2Z[x ]

}
=
{
4c0 + 4c1x + · · ·+ 4cnxn | ci ∈ Z, n ∈ N

}
( (2, 2x).
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Ideals generated by sets

As we did with groups, if S = {x}, we can write (x) rather than ({x}), etc.

Let’s see some examples of ideals in R = Z[x ].

(x) =
{
xf (x) | f ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x | ai ∈ Z

}
.

(2) =
{
2f (x) | f ∈ Z[x ]

}
=
{
2anxn + · · ·+ 2a1x + 2a0 | ai ∈ Z

}
.

(x , 2) =
{
xf (x) + 2g(x) | f , g ∈ Z[x ]

}
=
{
anxn + · · ·+ a1x + 2a0 | ai ∈ Z

}
.

Notice that we have

(x) ( (x , 2) ( R, and (2) ( (x , 2) ( R.

The ideal (x , 2) is said to be maximal, because there is nothing “between” it and R.

Question
How different would these ideals be in the ring R = Q[x ]?
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