Visual Algebra

Lecture 8.3: Units and zero divisors

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Units

Informally, a ring is a set where we can add, substract, multiply, but not necessarily divide.

Definition

A unit is any $u \in R$ that has a multiplicative inverse: some $v \in R$ such that uv = vu = 1.

Let U(R) be the set (a multiplicative group) of units of R.

Proposition

If an ideal I of R contains a unit, then I = R.

Proof

Consider a unit $u \in I$. Then for any $r \in R$: $r = (ru^{-1})u \in I$, hence I = R.

П

Examples

- 1. Let $R = \mathbb{Z}$. The units are $U(R) = \{-1, 1\}$.
- 2. Let $R = \mathbb{Z}_{10}$. Then 7 is a unit (and $7^{-1} = 3$) because $7 \cdot 3 = 1$. But 2 is not a unit.
- 3. Let $R = \mathbb{Z}_n$. A nonzero $k \in \mathbb{Z}_n$ is a unit if gcd(n, k) = 1.
- 4. The units of $M_2(\mathbb{R})$ are the invertible matrices.

Zero divisors

Definition

An element $x \in R$ is a left zero divisor if xy = 0 for some $y \neq 0$. (Right zero divisors are defined analogously.)

Examples

- 1. There are no (nonzero) zero divisors of $R = \mathbb{Z}$.
- 2. The zero divisors of $R = \mathbb{Z}_{10}$ are 0, 2, 4, 5, 6, 8.
- 3. A nonzero $k \in \mathbb{Z}_n$ is a zero divisor gcd(n, k) > 1.
- 4. The ring $R = M_2(\mathbb{R})$ has zero divisors, such as:

$$\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 6 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

One particular type of zero divisor will be important later.

Definition

An element *a* in a ring *R* is nilpotent if $a^n = 0$ for some $n \in \mathbb{N}$.

Group rings

A rich family of examples of rings can be constructed from multiplicative groups.

Let G be a finite (multiplicative) group, and R a commutative ring (usually, \mathbb{Z} , \mathbb{R} , or \mathbb{C}).

The group ring RG is the set of formal linear combinations of group elements with coefficients from R. That is,

$$RG := \{a_1g_1 + \cdots + a_ng_n \mid a_i \in R, g_i \in G\},\$$

where multiplication is defined in the "obvious" way.

For example, let $R = \mathbb{Z}$ and $G = D_4$, and take $x = r + r^2 - 3f$ and $y = -5r^2 + rf$ in $\mathbb{Z}D_4$. Their sum is

$$x+y=r-4r^2-3f+rf,$$

and their product is

$$xy = (r + r^2 - 3f)(-5r^2 + rf) = r(-5r^2 + rf) + r^2(-5r^2 + rf) - 3f(-5r^2 + rf)$$

= $-5r^3 + r^2f - 5r^4 + r^3f + 15fr^2 - 3frf = -5 - 8r^3 + 16r^2f + r^3f.$

Tip

Think of $\mathbb{Z}D_4$ as linear combinations of the "basis vectors"

$$\{\mathbf{e}_1, \mathbf{e}_r, \mathbf{e}_{r^2}, \mathbf{e}_{r^3}, \mathbf{e}_f, \mathbf{e}_{rf}, \mathbf{e}_{r^{2f}}, \mathbf{e}_{r^{3f}}\}$$

M. Macauley (Clemson)

Group rings

For another example, consider the group ring $\mathbb{R}Q_8$. Elements are formal sums

$$a + bi + cj + dk + e(-1) + f(-i) + g(-j) + h(-k), \quad a, \ldots, h \in \mathbb{R}.$$

Every choice of coefficients gives a different element in $\mathbb{R}Q_8$!

For example, if all coefficients are zero except a = e = 1, we get

 $1 + (-1) \neq 0 \in \mathbb{R}Q_8$ (because " $e_1 + e_{-1} \neq 0$ ").

In contrast, in the Hamiltonians, $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\},\$

1 + (-1) = [1 + 0i + 0j + 0k] + [(-1) + 0i + 0j + 0k] = (1 - 1) + 0i + 0j + 0k = 0.

Therefore, \mathbb{H} and $\mathbb{R}Q_8$ are different rings.

Remarks

If $g \in G$ has finite order |g| = k > 1, then RG always has zero divisors:

$$(1-g)(1+g+\cdots+g^{k-1}) = 1-g^k = 1-1 = 0.$$

■ *RG* contains a subring isomorphic to *R*.

• the group of units U(RG) contains a subgroup isomorphic to G.

Fields and division rings

Definition

If every nonzero element of R has a multiplicative inverse, then R is a division ring. It is a

- field if *R* is commutative,
- skew field if R is not commutative.

Examples of fields we've seen include \mathbb{Q} , \mathbb{R} , \mathbb{C} , and \mathbb{Z}_p for prime p.

The Hamiltonians $\mathbb H$ are a skew field.

Definition

A quadratic field is any field of the form

$$\mathbb{Q}(\sqrt{m}) = \{r + s\sqrt{m} \mid r, s \in \mathbb{Q}\},\$$

where $m \neq 0, 1$ is a square-free integer. We say " \mathbb{Q} adjoin \sqrt{m} ."

This is a field because:

$$(r+s\sqrt{m})(r-s\sqrt{m})=r^2-s^2m,$$
 $(r+s\sqrt{m})^{-1}=\frac{r-s\sqrt{m}}{r^2-s^2m}.$

Integral domains

Definition

An integral domain is a commutative ring with 1 and with no (nonzero) zero divisors.

An integral domain is a "field without inverses".

A field is just a commutative division ring. Moreover:

fields \subsetneq division rings, fields \subsetneq integral domains.

Examples

- Rings that are not integral domains: \mathbb{Z}_n (composite *n*), 2 \mathbb{Z} , $M_n(\mathbb{R})$, $\mathbb{Z} \times \mathbb{Z}$, \mathbb{H} .
- Integral domains that are not fields \mathbb{Z} , $\mathbb{Z}[x]$, $\mathbb{R}[x]$, $\mathbb{R}[[x]]$ (formal power series).

The ring " \mathbb{Z} adjoin \sqrt{m} ," defined as

$$\mathbb{Z}[\sqrt{m}] = \left\{ a + b\sqrt{m} \mid a, b \in \mathbb{Z} \right\},\$$

is an integral domain, but not a field.

Cancellation

When doing basic algebra, we often take for granted basic properties such as cancellation:

 $ax = ay \implies x = y.$

This need not hold in all rings!

Examples where cancellation fails $In \mathbb{Z}_6, \text{ note that } 2 = 2 \cdot 1 = 2 \cdot 4, \text{ but } 1 \neq 4.$ $In M_2(\mathbb{R}), \text{ note that } \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}.$

However, everything works fine as long as there aren't any (nonzero) zero divisors.

Proposition

Let R be an integral domain and $a \neq 0$. If ax = ay for some $x, y \in R$, then x = y.

Proof

If ax = ay, then ax - ay = a(x - y) = 0.

Since $a \neq 0$ and R has no (nonzero) zero divisors, then x - y = 0.

Finite integral domains

Remark

If R is an integral domain and $0 \neq a \in R$ and $k \in \mathbb{N}$, then $a^k \neq 0$.

Theorem

Every finite integral domain is a field.

Proof

Suppose *R* is a finite integral domain and $0 \neq a \in R$. It suffices to show that *a* has a multiplicative inverse.

Consider the infinite sequence a, a^2, a^3, a^4, \ldots , which must repeat.

Find i > j with $a^i = a^j$, which means that

$$0 = a^{i} - a^{j} = a^{j}(a^{i-j} - 1).$$

Since *R* is an integral domain and $a^{j} \neq 0$, then $a^{i-j} = 1$.

Thus, $a \cdot a^{i-j-1} = 1$.