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Group theory
normal subgroups are characterized by being invariant under conjugation:

H ≤ G is normal iff ghg−1 ∈ H for all g ∈ G , h ∈ H.

The quotient G/N exists iff N is a normal: N E G .

A homomorphism is a structure-preserving map: f (x ∗ y) = f (x) ∗ f (y).

The kernel of a homomorphism is normal: Ker(φ)E G .

If N E G , there is a natural quotient π : G ! G/N, π(g) = gN.

There are four isomorphism theorems.

Ring theory
(left) ideals of rings are characterized by being invariant under (left) multiplication:

I ⊆ R is a (left) ideal iff rx ∈ I for all r ∈ R, x ∈ I .

The quotient ring R/I exists iff I is a two-sided ideal: I E R.

A homomorphism is structure-preserving: f (x+y) = f (x)+f (y), f (xy) = f (x)f (y).

The kernel of a homomorphism is a two-sided ideal: Ker(φ)E R.

If I E R, there is a natural quotient π : R ! R/I , π(r) = r + I .

There are four isomorphism theorems.
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A familiar example
Consider the ring R = Z23 =

{
ab | a, b ∈ Z3

}
.

We know that the following map is a group homomorphism:

φ : Z23 ! Z3, φ(ab) = b.

The table below (right) shows it’s also a ring homomorphism.

Do you see why 〈10〉 is an ideal?
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Different types of substructures

Let’s consider two other subgroups of R = Z23.

The subgroup 〈11〉 is a subring but not an ideal.

The subgroup 〈12〉 is a not even a subring.
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Quotient rings
Since an ideal I of R is an additive subgroup (and hence normal):

R/I =
{
x + I | x ∈ R

}
is the set of cosets of I in R;

R/I is a quotient group; with the binary operation (addition) defined as

(x + I ) + (y + I ) := x + y + I .

It turns out that if I is also a two-sided ideal, then we can make R/I into a ring.

Proposition
If I ⊆ R is a (two-sided) ideal, then R/I is a ring (called a quotient ring), where
multiplication is defined by

(x + I )(y + I ) := xy + I .

Proof
We need to show this is well-defined. Suppose x + I = r + I and y + I = s + I . This means
that x − r ∈ I and y − s ∈ I .

It suffices to show that xy + I = rs + I , or equivalently, xy − rs ∈ I :

xy − rs = xy − ry + ry − rs = (x − r)︸ ︷︷ ︸
∈I

y + r (y − s)︸ ︷︷ ︸
∈I

∈ I .
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Ring homomorphisms

Definition
A ring homomorphism is a function f : R ! S satisfying

f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y) for all x , y ∈ R.

A ring isomorphism is a homomorphism that is bijective.

The kernel is the set Ker(f ) := {x ∈ R | f (x) = 0}.

Examples
1. The ring homomorphism φ : Z! Zn sending k 7! k (mod n) has Ker(φ) = nZ.
2. For a fixed real number α ∈ R, the “evaluation function”

φ : R[x ] −! R , φ : p(x) 7−! p(α)

is a homomorphism. The kernel consists of all polynomials that have α as a root.

3. For any ideal I E R, the canonical quotient map is the homomorphism

π : R −! R/I , r 7−! r + I .

4. The following quotient, for ideal I = (x2 + x + 1) in F2[x ], defines the finite field F4:

φ : F2[x ] −! F2[x ]/I , f (x) 7−! f (x) + I .

M. Macauley (Clemson) Lecture 8.4: Ring homomorphisms Visual Algebra 6 / 9

mailto:macaule@clemson.edu


Isomoprhism theorem prerequisites

Proposition
The kernel of a ring homomorphism φ : R ! S is a two-sided ideal.

Proof
We know that Ker(φ) is an additive subgroup of R. We must show that it’s an ideal.

Left ideal: Let k ∈ Ker(φ) and r ∈ R. Then

φ(rk) = φ(r)φ(k) = φ(r) · 0 = 0 =⇒ rk ∈ Ker(φ). X

Showing that Ker(φ) is a right ideal is analogous. �

Proposition
The sum S + I = {s + i | s ∈ S, i ∈ I} of a sum and an ideal is a subring of R.

Proof
S + I is an additive subgroup, and it’s closed under multiplication because

s1, s2 ∈ S, i1, i2 ∈ I =⇒ (s1 + i1)(s2 + i2) = s1s2︸︷︷︸
∈S

+ s1i2 + i1s2 + i1i2︸ ︷︷ ︸
∈I

∈ S + I . �
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Basic properties of ring homomorphisms

Proposition
A ring homomorphism φ : R ! S is one-to-one if and only if Ker(φ) = {0}.

Proof
“⇒” Suppose φ is 1-to-1, and let r ∈ Ker(φ). Then φ(0) = 0 = φ(r), so r = 0. X

“⇐” Suppose Ker(φ) = {0}, and say φ(x) = φ(y).

Then 0 = φ(x)− φ(y) = φ(x − y) ⇒ x − y ∈ Ker(φ) ⇒ x − y = 0. X

Proposition
Every nontrivial homomorphism φ : F ! R from a field is one-to-one.

Proof
Every non-zero element of a field is a unit.

If an ideal I contains a unit, then I = R.

Thus, if Ker(φ) � R, then Ker(φ) = {0}, and hence φ is injective. �
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The isomorphism theorems for rings

All of the isomorphism theorems for groups have analogues for rings.

Fundamental homomorphism theorem: “All homomorphic images are quotients”

Correspondence theorem: Characterizes “subrings and ideals of quotients”

Fraction theorem: Characterizes “quotients of quotients”

Diamond theorem: Characterizes “duality of subquotients”

We’ll state and prove these in the next lecture.

We’ll also see a number of visuals that illustrate them.

These will be analogous to the visuals that we saw for the group isomorphism theorems.

This is one reason why it’s important to not abandon finite rings.
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