Visual Algebra

Lecture 8.6: Maximal ideals

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Maximal ideals and simple rings

A maximal normal subgroup M of G has no normal subgroups $M \leq N \leq G$. Formally:

$$M \le N \le G$$
, and $M, N \le G \implies N = M$, or $N = G$.

By the correspondence theorem, a normal subgroup $M \triangleleft G$ is maximal iff G/M is simple.

The Prüfer group $C_{p^{\infty}}$ of all p^n -th roots of unity $(n \in \mathbb{N})$ has no maximal normal subgroups:

$$\langle 1 \rangle \leq C_p \leq C_{p^2} \leq C_{p^3} \leq \cdots \leq C_{p^{\infty}}, \qquad C_n = \left\{ e^{2\pi i k/n} \mid k \in \mathbb{N} \right\} \subseteq \mathbb{C}.$$

$$C_n = \left\{ e^{2\pi i k/n} \mid k \in \mathbb{N} \right\} \subseteq \mathbb{C}.$$

Definition

An ideal $I \subseteq R$ is maximal if $I \subseteq J \subseteq R$ implies J = I or J = R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

The following is immediate by the correspondence theorem.

Remark

An ideal $M \subseteq R$ is maximal iff R/M is simple.

Maximal ideals and simple rings

Simple rings have no nontrivial proper ideals. Proper ideals cannot contain units.

In a field, every nonzero element is a unit. Therefore, fields have no nontrivial proper ideals.

Proposition

A commutative ring R with unity is simple iff it is a field.

Proof

" \Rightarrow ": Assume R is simple. Then (a) = R for any nonzero $a \in R$.

Thus, $1 \in (a)$, so 1 = ba for some $b \in R$, so $a \in U(R)$ and R is a field. \checkmark

" \Leftarrow ": Let $I \subseteq R$ be a nonzero ideal of a field R. Take any nonzero $a \in I$.

Then $a^{-1}a \in I$, and so $1 \in I$, which means I = R. \checkmark

Theorem

Let R be a commutative ring with 1. The following are equivalent for an ideal $I \subseteq R$.

(i) I is maximal;

(ii) R/I is simple;

(iii) R/I is a field.

Examples of maximal ideals & simple rings

- 1. The maximal ideals of $R = \mathbb{Z}$ are M = (p). The quotient field is $\mathbb{Z}/(p) \cong \mathbb{Z}_p$
- 2. Maximal ideals of $R = \mathbb{Z}[x]$ includes those of the form

$$(x, p) = \{xf(x) + p \cdot g(x) \mid f, g \in \mathbb{Z}[x]\} = \{a_n x^n + \dots + a_1 x + pa_0 \mid a_i \in \mathbb{Z}\}.$$

In the quotient field, "x := 0" and "p := 0", and so

$$\mathbb{Z}[x]/(x,p) = \{a_0 + M \mid a_0 = 0, \ldots, p-1\} \cong \mathbb{Z}_p.$$

3. Let $R = \mathbb{Q}[x]$. The ideal

$$(x) = \{xf(x) \mid f \in \mathbb{Q}[x]\} = \{a_nx^n + \dots + a_1x \mid a_i \in \mathbb{Z}\}\$$

is maximal. In the quotient field, "x := 0", and so

$$\mathbb{Q}[x]/(x) = \{a_0 + M \mid a_0 \in \mathbb{Q}\} \cong \mathbb{Q}.$$

4. In the multivariate ring $R = \mathbb{F}[x, y]$ over a field, the ideal

$$I = (x, y) = \{x \cdot f(x, y) + y \cdot g(x, y) \mid f, g \in R\}$$

of polynomials with no constant term is maximal. The quotient field is $R/I \cong \mathbb{F}$.

5. Examples of simple noncommutative rings: \mathbb{H} , and $\mathsf{Mat}_n(\mathbb{F})$.

Existence of maximal ideals

Given an ideal $I_1 \subseteq R$. Let's try to find a maximal ideal that contains it.

If we have a sequence $l_1 \subsetneq l_2 \subsetneq l_3 \subsetneq \cdots$ of ideals, then $J_1 := \bigcup I_k \subsetneq R$ is an ideal.

If this isn't maximal, find $r_2 \notin J_1$, and let $J_2 = (J_1, r_2)$, and repeat this process.

Suppose we have $J_1 \subsetneq J_2 \subsetneq J_3 \subsetneq \cdots$. Then $K_1 := \bigcup J_k \subsetneq R$ is an ideal.

Is this process going to "stop"?

Assuming the axiom of choice: YES!

Ordinals and transfiniteness

A set is well-ordered if every subset has a minimal element.

The natural numbers $\mathbb N$ are well-ordered, the integers $\mathbb Z$ are not.

Loosely speaking, an ordinal is an equivalence class of well-ordered sets.

Ordinal arithmetic involves addition, multiplication, and exponentiation.

The ordinal for $\mathbb N$ is denoted ω . Some things may be surprising, like $\omega=1+\omega\neq\omega+1$.

There are three types:

■ finite ordinals

successor ordinals

■ limit ordinals

Ordinals and transfiniteness

Here are some depictions of the ordinals ω^2 and ω^{ω} .

Mathematical induction and recursion is traditionally done over the ordinal ω .

Over general ordinals, these are callled transfinite induction and recursion.

The axiom of choice is needed.

The maximal ideal of $I \subseteq R$ is basically the result of a *transfinite union*.

Existence of maximal ideals

Zorn's lemma (equivalent to the axiom of choice)

If $\mathcal{P} \neq \emptyset$ is a poset in which every chain has an upper bound, then \mathcal{P} has a maximal element.

Proposition

If R is a ring with 1, then every ideal $I \neq R$ is contained in a maximal ideal M.

Proof

Fix I, and let $\mathcal P$ be the poset of proper ideals containing it.

Every chain $I \subseteq I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ has an upper bound, $\bigcup I_k \subsetneq R$.

Zorn's lemma guarantees a maximal element M in \mathcal{P} , which is a maximal ideal containing I.

Corollary

If R is a ring with 1, then every non-unit is contained in a maximal ideal M.

Do you see why this doesn't work for maximal subgroups?