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The characteristic of a field

Definition
The characteristic of F, denoted char F, is the smallest n ≥ 1 for which

n1 := 1+ 1+ · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If there is no such n, then char F := 0.

Proposition
If the characteristic of a field is positive, then it must be prime.

Proof
If char F = n = ab, we can write

1+ · · ·+ 1︸ ︷︷ ︸
n

= (1+ · · ·+ 1︸ ︷︷ ︸
a

)(1+ · · ·+ 1︸ ︷︷ ︸
b

) = 0.

Since F contains no zero divisors, either a = n or b = n, hence n is prime. �
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Finite fields

We’ve already seen:

Fp = {0, 1, . . . , p − 1} is a field if p is prime

every finite integral domain is a field.

But what do these “other” finite fields look like?

Let R = F2[x ]. (We can ignore negative signs.)

The polynomial f (x) = x2 + x + 1 is irreducible over F2 because it doesn’t factor as
f (x) = g(x)h(x) of lower-degree terms. (Note that f (0) = f (1) = 1 6= 0.)

Consider the ideal I = (x2 + x + 1); the multiples of x2 + x + 1.

In R/I , we have the relation x2 + x + 1 = 0, or equivalently,

x2 = −x − 1 = x + 1.

The quotient has only 4 elements:

0+ I , 1+ I , x + I , (x + 1) + I .

As with the quotient group (or ring) Z/nZ, we usually drop the “ I ”, and just write

R/I = F2[x ]/(x2 + x + 1) ∼=
{
0, 1, x , x + 1

}
.
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Finite fields

Here is the finite field of order 4: F4 ∼= R/I = F2[x ]/(x2 + x + 1):
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F4∼=〈1, x〉

〈x〉 〈1〉 〈x + 1〉

〈0〉

Theorem (wait until Galois theory)
There exists a finite field Fq of order q, which is unique up to isomorphism, iff q = pn for
some prime p. If n > 1, then this field is isomorphic to the quotient ring

Fp[x ]/(f ),

where f is any irreducible polynomial of degree n.

Much of the error correcting techniques in coding theory are built using mathematics over
F28 = F256. This is what allows DVDs to play despite scratches.
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Computations within finite fields
The Macaulay2 software system was written for researchers in algebraic geometry and
commutative algebra.

It is freely available online:

https://www.unimelb-macaulay2.cloud.edu.au/

If we want to work in the quotient field F8 ∼= F2[x ]/(x3 + x + 1), we can type in:

R = ZZ/2[x] / ideal(x^3+x+1)

In F2[x ], the product (x2 + x + 1)(x + 1) = x3 + 2x2 + 2x + 1 is just x3 + 1.

Since x3 ≡ x + 1 modulo (x3 + x + 1), this reduces down to x .

Macaulay2 can compute this immediately, just by typing:

(x^2+x+1)*(x+1)
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Finite fields

Here is the finite field of order 8: F8 ∼= R/I = F2[x ]/(x3 + x + 1):
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Notice how F2 = {0, 1} arises is a subfield, but not F4. (Why?)
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Finite fields

The multiplictive groups of these finite fields are F×4 ∼= C3 and F×8 ∼= C7.

If F8 had F4 as a subfield, then it would have three elements of order 3.

F4

Z2 F2 Z2

〈0〉

F8

Z22 Z22 Z22 Z22 Z22 Z22 Z22

Z2 Z2 Z2 F2 Z2 Z2 Z2

〈0〉

Similarly, F16 has 35 Z22-subgroups, but F
×
16
∼= C15 has only two elements of order 3.

These, with 0 and 1, comprise its unique F4-subfield.
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The subring lattice of the finite field F16 ∼= Z2[x ]/(x4 + x + 1)
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Z2 Z2 Z2 Z2 Z2 Z2 Z2 F2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

〈0〉
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Subfields of finite fields

Proposition
If F is a finite field, then |F| = pn for some prime p and n ≥ 1.

Proof
If char F = p, then F contains Fp = {0, 1, . . . , p − 1} as a subfield.

Note that F is an Fp-vector space, so pick a basis, x1, . . . , xn.

Every x ∈ F can be written uniquely as

x = a1x1 + · · ·+ anxn, ai ∈ Fp.

Counting elements immediately gives |F| = pn.

Proposition
If Fpn contains a subfield isomorphic to Fpm , then m | n.

Proof
Same as above, but Fpn is an Fpm -vector space. Take a basis x1, . . . , xk , count elements. �
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Finite multiplictive subgroups of a field

Proposition (upcoming)
In a field, a degree-n polynomial can have at most n roots.

Proof (sketch)

The polynomial ring F[x ] has unique factorization. (We’ll show this soon.)

If f (r) = 0, then factor f (x) = (x − r)g(x), where deg g = n − 1. Apply induction.

Proposition

Every finite subgroup of the multiplictive group F× is cyclic.

Proof
Let H ≤ F× have finite order. If it were not cyclic, then Cpn × Cpm ≤ H for n,m ≥ 1.

Since each factor has a Cp-subgroup, F× has a C2
p -subgroup.

All p2 elements in H satisfy f (x) = xp − 1, which is impossible. �
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