Visual Algebra

Lecture 8.10: Rings of fractions

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Motivation: constructing ${\mathbb Q}$ from ${\mathbb Z}$

Rational numbers are ordered pairs under an equivalence, e.g., $\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \cdots$

Equivalence of fractions

Given a, b, c, $d \in \mathbb{Z}$, with b, $d \neq 0$,

$$\frac{a}{b} = \frac{c}{d}$$
 if and only if $ad = bc$.

We can mimic this construction in any integral domain.

Definition

Given an integral domain R, its field of fractions is the set

$$R \times R^* = \{(a, b) \mid a, b \in R, b \neq 0\},\$$

under the equivalence $(a_1, b_1) \sim (a_2, b_2)$ iff $a_1b_2 = b_2a_1$.

Denote the class containing (a, b) as a/b. Addition and multiplication are defined as

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$

It's not hard to show that + and \times are well-defined.

Embedding integral domains in fields

Lemma

In the construction of the field of fractions from R, we must verify:

- $\blacksquare \sim$ is a equivalence relation
- the + and \times operations are well-defined on $(R \times R^*)/\sim$
- the additive identity is 0/r for any $r \in R^*$
- the multiplicative identity is r/r for any $r \in R^*$
- $(a, b)^{-1} = b/a$.

Integral domain	Field of fractions
$\mathbb Z$ (integers)	\mathbb{Q} (rationals)
$\mathbb{Z}[i]$ (Gaussian integers)	$\mathbb{Q}(i)$ (Gaussian rationals)
F[x] (polynomials)	F(x) (rational functions)

Every integral domain canonically embeds into its field of fractions, via $r \mapsto r/1$. Moreover, this is the *minimal* field containing *R*.

Proposition

Let *R* be an integral domain with embedding $\iota: R \hookrightarrow F_R$ into its field of fractions. Then for every other embedding $f: R \hookrightarrow K$ into a field, there is a unique $h: F_R \hookrightarrow K$ such that $h \circ \iota = f$.

Proof

Define the map

$$h: F_R \longrightarrow K, \qquad h(a/b) \longmapsto h(a/1)h(b/1)^{-1} = f(a)f(b)^{-1}.$$

We need to show that h is

- (i) well-defined
- (ii) a ring homomorphism,

(iii) injective

(iv) unique.

Proposition

Let *R* be an integral domain with embedding $\iota: R \hookrightarrow F_R$ into its field of fractions. Then for every other embedding $f: R \hookrightarrow K$ into a field, there is a unique $h: F_R \hookrightarrow K$ such that $h \circ \iota = f$.

Proof

Define the map

$$h\colon F_R \longrightarrow K, \qquad h(a/b) \longmapsto h(a/1)h(b/1)^{-1} = f(a)f(b)^{-1} = f(a)f(b^{-1}).$$

(i) Well-defined. Suppose $a/b = c/d \iff ad = bc \iff ab^{-1} = cd^{-1}$.

$$h(a/b) = f(a)f(b^{-1}) = f(ab^{-1}) = f(cd^{-1}) = f(c)f(d^{-1}) = h(c/d).$$

Proposition

Let *R* be an integral domain with embedding $\iota: R \hookrightarrow F_R$ into its field of fractions. Then for every other embedding $f: R \hookrightarrow K$ into a field, there is a unique $h: F_R \hookrightarrow K$ such that $h \circ \iota = f$.

Proof

Define the map

$$h: F_R \longrightarrow K, \qquad h(a/b) \longmapsto h(a/1)h(b/1)^{-1} = f(a)f(b)^{-1} = f(a)f(b^{-1}).$$

(ii) Ring homomorphism. Suppose a/b = c/d. Then

$$h(a/b \cdot c/d) = h(ac/bd) = f(ac)f(d^{-1}b^{-1}) = f(a)f(c)f(d^{-1})f(b^{-1})$$
$$= f(a)f(b^{-1}) \cdot f(c)f(d^{-1}) = h(a/b)h(c/d).$$

Verification of h(a/b + c/d) = h(a/b) + h(c/d) is similar. (Exercise)

Proposition

Let *R* be an integral domain with embedding $\iota: R \hookrightarrow F_R$ into its field of fractions. Then for every other embedding $f: R \hookrightarrow K$ into a field, there is a unique $h: F_R \hookrightarrow K$ such that $h \circ \iota = f$.

Proof

Define the map

$$h: F_R \longrightarrow K$$
, $h(a/b) \longmapsto h(a/1)h(b/1)^{-1} = f(a)f(b)^{-1} = f(a)f(b^{-1})$

(iii) Injective. It suffices to show that $Ker(h) = \{0\}$. Suppose

$$0 = h(a/b) = f(a)f(b)^{-1} \in K.$$

However, $f(b)^{-1} \neq 0$ since f is an embedding and $b \neq 0$.

Thus f(a) = 0, so a = 0 in R. Thus a/1 = 0/1, the zero element in F_R .

Proposition

Let *R* be an integral domain with embedding $\iota: R \hookrightarrow F_R$ into its field of fractions. Then for every other embedding $f: R \hookrightarrow K$ into a field, there is a unique $h: F_R \hookrightarrow K$ such that $h \circ \iota = f$.

Proof

Define the map

 $h: F_R \longrightarrow K$, $h(a/b) \longmapsto h(a/1)h(b/1)^{-1} = f(a)f(b)^{-1} = f(a)f(b^{-1})$.

(iv) Uniqueness. Suppose there is another $g: F_R \to K$ such that $f = g \circ \iota$. Then $g(a/b) = g((a/1) \cdot (b/1)^{-1}) = g(a/1)g(b/1)^{-1} = g(\iota(a))g(\iota(b))^{-1} = f(a)f(b)^{-1} = h(a/b)$, which completes the proof.

M. Macauley (Clemson)

Rings of fractions and localization

The co-universal property can be used as the *definition* of the field of fractions, allowing:

- the generalization to rings without 1, e.g., $R = 2\mathbb{Z}$. (Exercise: show that $F_{2\mathbb{Z}} = \mathbb{Q}$.)
- the generalization to constructing fractions of certain subsets.

Let R be commutative, $D \subseteq R$ nonempty and multiplicatively closed with no zero divisors.

We can carry out the same construction of the set

 $R \times D = \{(r, d) \mid r \in R, d \in D\},$ $(r_1, d_1) \sim (r_2, d_2) \text{ iff } r_1 d_2 = r_2 d_1.$

The resulting ring is the localization of R at D, denoted $D^{-1}R$.

Proposition (HW)

Let *R* be a commutative ring with embedding $\iota: R \hookrightarrow D^{-1}R$. Then for every other embedding $f: R \hookrightarrow S$ to a ring where f(D) are units, there is a unique $h: D^{-1}R \hookrightarrow S$ such that $h \circ \iota = f$.

Localization with zero divisors

We can generalize this further! Allow D to contain zero divisors.

The mapping $R \rightarrow D^{-1}R$ sending r to its equivalence class is no longer injective:

$$\iota: R \longrightarrow D^{-1}R$$
, $\iota(z) = 0$, for all zero divisors $z \in D$.

We still have a co-universal property, that could have been the definition.

Proposition (exercise)

Let R be a commutative ring with $\iota: R \to D^{-1}R$. For every other $f: R \to S$ to a ring where the non zero-divisors in f(D) are units, there is a unique $h: D^{-1}R \to S$ such that $h \circ \iota = f$.

Thus, $D^{-1}R$ is the "smallest ring" where all non zero-divisors in D are invertible.

Examples of rings of fractions

- 1. If R is an integral domain and $D = R^*$, then $D^{-1}R$ is its field of fractions.
- 2. If D is the set of non zero divisors, then $D^{-1}R$ is the total ring of fractions of R.
- 3. If non-unit of R is a zero divisor, then R is equal to its total ring of fractions. Examples include $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$.

In these rings, every prime ideal is maximal (exercise).

4. The localization of R = F[x] at $D = \{x^n \mid n \in \mathbb{Z}\}$ are the Laurent polynomials:

$$D^{-1}R = F[x, x^{-1}] = \{a_{-m}x^{-m} + \dots + a_{-1}x^{-1} + a_0 + a_1x + \dots + a_nx^n \mid a_i \in F\}.$$

5. If $R = \mathbb{Z}$ and $D = \{5^n \mid n \in \mathbb{N}\}$, then

$$D^{-1}R = \mathbb{Z}[\frac{1}{5}] = \left\{a_0 + \frac{a_1}{5} + \frac{a_2}{5^2} + \dots + \frac{a_n}{5^n} \mid a_i \in \mathbb{Z}\right\}.$$

which are "polynomials in $\frac{1}{5}$ " over \mathbb{Z} .

If D = R - P for a prime ideal, then R_P := D⁻¹R is the localization of R at P. It is a local ring - it has a unique maximal ideal, PR_P.