MATH 3110 - Fall 2014 Homework 5

Due: Thursday October 2

Questions. Chapter 3 of Strang

- 1. Find the dimension and a basis of the following subspaces of the space of 3×3 matrices.
 - (a) Lower triangular matrices.
 - (b) All symmetric matrices.
 - (c) All anti-symmetric matrices.
- 2. Find a basis for the spaces C(A), N(A), R(A) and $N(A^T)$ for

A =	$\begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{pmatrix}$	0 1 1 1	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 4 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 4 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 4 \end{array} $	$\begin{array}{c}1\\2\\3\\3\end{array}$	
	$\begin{pmatrix} 1\\1 \end{pmatrix}$	1	$\frac{3}{3}$	$\frac{3}{3}$	1	3 3	$\begin{pmatrix} 3\\ 3 \end{pmatrix}$	

3. Let
$$V = \langle \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \rangle, W = \langle \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \rangle \subseteq \mathbb{R}^3.$$
 (4 marks)

Find an element of the subset $V \cap W$. Explain why $V \cap W \neq \{0\}$.

4. Without computing A, find bases for the row and column space.

 $A = \begin{pmatrix} 1 & 2\\ 4 & 5\\ 2 & 7 \end{pmatrix} \begin{pmatrix} 3 & 0 & 3\\ 1 & 1 & 2 \end{pmatrix}.$

(total of 20 marks)

(8 marks)

(6 marks)

(2 marks)