MATH 3110 - Fall 2014 Homework 6

Due: Thursday October 16

Questions. Chapter 4.1 of Strang

1. Find dimension and basis of the orthogonal complement $S^{\perp} \subset \mathbb{R}^3$ when

(a)
$$S = \{0\}$$

(b) $S = \langle \begin{pmatrix} 1\\2\\3 \end{pmatrix} \rangle$
(c) $S = \langle \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -3\\-2\\-1 \end{pmatrix} \rangle$

- 2. Let P ⊆ ℝ⁴ be the plane defined the linear equation x₁ + 2x₂ + 3x₃ + 4x₄ = 0. (2 marks) Write a basis for P[⊥] and construct a matrix that has P as nullspace. (HINT: write this equation in the form Ax = 0.)
- 3. Find $A^T A$ if the columns of A are unit vectors of R^3 and all mutually perpendicular. (2 marks)
- 4. For each of the following sentences, solve it or motivate it if unsolvable.
 - (a) Find a matrix with (1, 4, 2) in both its row space and column space.
 - (b) Find a matrix with (1, 4, 2) in both its row space and nullspace.
 - (c) Find a matrix with (1, 4, 2) in both its column space and nullspace.

(HINT: reason about the orthogonality of the requested spaces)

Questions. Chapter 4.2 of Strang

(total of 4 marks)

1. Let $S = \langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T \rangle$ be a line of \mathbb{R}^3 . Project the vectors $\begin{pmatrix} 5 & 7 & 3 \end{pmatrix}^T$ and $\begin{pmatrix} -5 & -7 & -3 \end{pmatrix}^T$ onto S. (4 marks)

(total of 16 marks)

(6 marks)

(6 marks)