MATH 3110 - Fall 2014 Homework 7

Due: Thursday October 23

Questions. Chapter 4.2 of Strang	(total of 8 marks)
1. Consider the subset $S \subseteq \mathbb{R}^4$ defined by the equation $x - y - 2z = 0$.	(6 marks)
(a) Find the dimension of S and give a basis of it.	
(b) Consider the basis to be the columns of a matrix A_1 such that $S = C(A_1)$. Compute the pro- S.	bjection matrix P_1 for
(c) Find another basis for S and compute the projection matrix P_2 . Notice that $P_1 = P_2$, meani matrix does not depend on the choice of the basis.	ng that the projection
2. Show that if P is a projection matrix, then $I - P$ is a projection matrix.	(2 marks)
Questions. Chapter 4.3 of Strang	(total of 5 marks)
1. Consider the four data points $(t_i, b_i) = (0, 0)$, $(1, 8)$, $(3, 8)$ and $(4, 20)$. Find the best fitting line $b = C + Dt$ between the points.	(5 marks)
Questions. Chapter 4.4 of Strang	(total of 7 marks)
1. Find a basis of the plane $2x + y - 2z = 0$ and make it orthonormal.	(2 marks)
2. Using Gram-Schmidt, make the vectors $a_1 = \begin{pmatrix} 2 \\ 3 \\ 6 \\ 0 \end{pmatrix}$, $a_2 = \begin{pmatrix} 2 \\ 1 \\ 7 \\ 2 \end{pmatrix}$ and $a_3 = \begin{pmatrix} -1 \\ 3 \\ 7 \\ 4 \end{pmatrix}$ orthonormal.	(3 marks)
3. Let us prove that orthonormal vectors q_1, q_2, q_3 are linearly independent.	(2 marks)
(a) Vector version. Using vector product, prove that if $c_1q_1 + c_2q_2 + c_3q_3 = 0$ then $c_1 = c_2 = c_3$ (Hint: Which vector product leads to $c_i = 0$ for $i = 1, 2, 3$?)	$_{3}=0.$