MATH 3110 - Fall 2017
Homework 1
Due: Thursday, September 7

QUESTION 1. Chapter 1 of Strang
(total of 15 marks)

1. Four corners of a parallelepiped are \((0,0,0), (6,0,0), (0,4,0)\) and \((0,0,10)\).
 (3 marks)

 (a) Find the coordinates of the remaining 4 corners.
 (b) Find the coordinates of the center point of the box.
 (c) Find the coordinates of the center points of the six faces.

2. Find two different linear combinations of the vectors \(v_1 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, v_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}\) and \(v_3 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}\) that produce \(w = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\).
 (4 marks)

3. Consider the following three vectors:

\[
v_1 = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ -4 \\ 5 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -1 \\ 2 \\ -4 \end{pmatrix}.
\]

 (a) Find a nontrivial linear combination of the vectors that give the zero vector.
 (b) Let \(V\) be the \(3 \times 3\) matrix with vectors \(v_1, v_2\) and \(v_3\) as columns. Is \(V\) invertible or singular?
 (c) Which space do the three vectors span? (line, plane or 3d space) Motivate the answer.
 (d) Following Section 1.2 of Strang, compute the length of the three vectors.

4. Without using elimination, find the solution of the following system of linear equations.
 (2 marks)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
2 & -4 & 0 & 0 \\
1 & -1 & 1 & 0 \\
1 & -2 & -3 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix}
=
\begin{pmatrix}
2 \\
0 \\
1 \\
1
\end{pmatrix}.
\]

QUESTION 2. Chapter 2 of Strang
(total of 15 marks)

1. Perform the following multiplications
 (6 marks)

 (a) \[
 \begin{pmatrix}
1 & 2 & 1 \\
4 & 2 & 4 \\
3 & 4 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}
\]
 (b) \[
 \begin{pmatrix}
1 & 2 & 3 \\
1 & 2 & 1 \\
4 & 2 & 4 \\
3 & 4 & 1
\end{pmatrix}
\]
 (c) \[
 \begin{pmatrix}
1 & 2 & 3 \\
-1 & 0 & 0 \\
4 & -5 & 6 \\
0 & -2 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
-2 \\
3
\end{pmatrix}
\]

 For (c) use the Ways 1 and 4 explained in class.
2. For which three numbers \(a \) will elimination fail to give three pivots? Motivate the answer. (3 marks)

\[
A = \begin{pmatrix}
a & 2 & 3 \\
a & a & 4 \\
a & a & a \\
\end{pmatrix}.
\]

For which possible \(a \)'s is matrix \(A \) either invertible or singular?

3. Consider the following system of linear equations. (6 marks)

\[
\begin{pmatrix}
2 & 1 & 3 \\
4 & 3 & 9 \\
-2 & -3 & -11
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
-7 \\
-21 \\
5
\end{pmatrix}.
\]

(a) Using elimination and back substitution, find the solution of the system.

(b) Write the elementary matrices \(E_{21}, E_{31} \) and \(E_{32} \) of the elimination.