MATH 3110 - Fall 2017
Homework 7
Due: October 19, 2017

QUESTION 1. Chapter 4.1 of Strang (total of 18 marks)

1. Find dimension and basis of the orthogonal complement $S^\perp \subset \mathbb{R}^3$ when
 (6 marks)

 (a) $S = \langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \rangle$
 (b) $S = \langle \begin{pmatrix} 1 \\ 2 \\ 3 \\ -3 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -2 \\ 3 \end{pmatrix} \rangle$

2. Let $P \subseteq \mathbb{R}^4$ be the plane defined the linear equation $x_1 + 2x_2 + 3x_3 + 4x_4 = 0$.
 Write a basis for P^\perp and construct a matrix that has P as nullspace.
 (HINT: write this equation in the form $Ax = 0$.)
 (3 marks)

3. For each of the following sentences, solve it or motivate if unsolvable.
 (9 marks)

 (a) Find a matrix with $\begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$ in both its row space and column space.
 (b) Find a matrix with $\begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$ in both its row space and nullspace.
 (c) Find a matrix with $\begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$ in both its column space and nullspace.

QUESTION 2. Chapter 4.2 of Strang (total of 12 marks)

1. Let $S = \langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \rangle$ be a line of \mathbb{R}^3. Project the vectors $b_1 = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$ and $b_2 = \begin{pmatrix} -5 \\ -7 \\ -3 \end{pmatrix}$ onto S.
 (4 marks)

2. Let $S = \langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \rangle$ be a plane in \mathbb{R}^5.
 (8 marks)

 (a) Compute the projection matrix of S.
 (b) Project the following points onto S:
 $b_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $b_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ and $b_3 = \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}$.
