QUESTION 1. Chapter 2 of Strang (total of 30 marks)

1. Determine which of the following matrices is invertible and, if invertible, compute the inverse. (8 marks)

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & -1 \\ 1 & 2 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -3 & -5 \\ 1 & 3 & 6 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -6 & -10 \\ 1 & 0 & -1 \end{pmatrix} \]

2. If \(P_1 \) and \(P_2 \) are permutation matrices, so is \(P_1 P_2 \). Give examples of: (6 marks)
 - matrices \(P_1, P_2 \) of size \(3 \times 3 \) such that \(P_1 P_2 \neq P_2 P_1 \), and
 - matrices \(P_3 \neq P_4 \) of size \(3 \times 3 \) such the \(P_3 P_4 = P_4 P_3 \) when neither of the matrices is the either identity or the zero matrix.

3. Find the \(A = LU \) factorizations of the following matrix: (6 marks)

\[A = \begin{pmatrix} 1 & 2 & -2 & 1 \\ -1 & 0 & 3 & 0 \\ 1 & 6 & 0 & 4 \\ 0 & 2 & 1 & 1 \end{pmatrix} \]

4. If \(A \) is a symmetric matrix and \(B \) is an antisymmetric matrix, which of the following matrices is symmetric? (Motivate the answer) (6 marks)
 - (a) \(A^3 - B^3 \)
 - (b) \(ABAB \)
 - (c) \((A + B)(A - B) \)

5. (a) Let \(A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 1 & 3 \\ 1 & 1 & 1 \end{pmatrix} \). Find matrices \(B, C \) such that \(A = B + C \) with \(B = B^T \) (symmetric), and \(C = -C^T \) (anti-symmetric). (2 marks)

 \[B = B^T \]
 \[C = -C^T \]

(b) Find formulas for \(B \) and \(C \) involving \(A \) and \(A^T \). We want \(A = B + C \), \(B = B^T \) and \(C = -C^T \). (2 marks)