Question. Chapter 6.1 and 6.2 of Strang (total of 20 marks)

1. Compute the eigenvalues and eigenvectors of the following matrices (6 marks)

 (a) \(A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix} \)

 (b) \(A_2 = A_1^{-1} \)

 (c) \(A_3 = A_1^2 + 3I \)

2. Prove that if \(A \) is an invertible matrix and \(\lambda \) is an eigenvalue of \(A \), then \(\lambda^{-1} \) is an eigenvalue of \(A^{-1} \). (3 marks)

3. Prove that \(A \) is a diagonal matrix if and only if the standard basis vectors are all eigenvectors of \(A \). (3 marks)

4. Diagonalize matrix \(A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \) by finding the matrices \(S \) and \(\Lambda \). (4 marks)

5. Diagonalize \(A \) and compute \(SA^kS^{-1} \) to prove this formula for \(A^k \) (4 marks)

\[
A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \quad \text{and} \quad A^k = \frac{1}{2} \begin{pmatrix} 1 + 3^k & 1 - 3^k \\ 1 - 3^k & 1 + 3^k \end{pmatrix}
\]