MATH 8510 - Fall 2014 Homework 4

Due: Thursday, September 25

1. Let G be the group

$$\operatorname{GL}_2^+(\mathbb{R}) = \{g \in \operatorname{GL}_2(\mathbb{R}) : \det(g) > 0\}$$

Let \mathcal{H} denote the complex upper half-plane, i.e.,

$$\mathcal{H} = \{ z = x + iy \in \mathbb{C} \mid y > 0 \}.$$

(a) Show that G acts on \mathcal{H} via $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$. (Don't forget to show this actually maps into \mathcal{H} in addition to showing it is a group action.)

- (b) Compute $\operatorname{Stab}_G(i)$.
- 2. Let p and q be distinct primes so that $q \not\equiv 1 \pmod{p}$ and $p \not\equiv 1 \pmod{q}$. If G is a group of order p^2q , show that G is isomorphic to $\mathbb{Z}/p^2q\mathbb{Z}$ or $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.
- 3. Let G be a finite group with |G| > 1.
 - (a) Prove that G has a composition series, i.e., there exists a sequence of groups
 - (b) Assume G has two composition series

$$\{e\} = N_0 \leq N_1 \leq \cdots \leq N_n = G$$
$$\{e\} = M_0 \leq M_1 \leq M_2 = G.$$

Show that n = 2.

(c) Let

$$\{e\} = N_0 \trianglelefteq N_1 \trianglelefteq \dots \trianglelefteq N_n = G$$
$$\{e\} = M_0 \trianglelefteq M_1 \trianglelefteq \dots \trianglelefteq M_m = G$$

be two composition series for G. Use induction on $\min(m, n)$ and part (b) to prove that m = n and there is a permutation σ so that $M_i/M_{i-1} \sim N_{\sigma(i)}/N_{\sigma(i)-1}$ for all i. (Hint: Apply the induction hypothesis to $H = N_{n-1} \bigcap M_{m-1}$.)

- (d) Give a composition series for $\mathbb{Z}/15\mathbb{Z}$.
- (e) Give an example of an infinite group G and subgroups $\{N_i\}$ so that

$$G = N_0 \trianglerighteq N_1 \trianglerighteq N_2 \trianglerighteq \cdots$$

that does not terminate, i.e., $N_m \neq \{e\}$ for all m.

- 4. Let G be a finite group, p a prime, and $p^k \mid |G|$ for some $k \ge 0$. Modify the proof of Sylow's Theorem to show that G has a subgroup of order p^k .
- 5. Let p be an odd prime and G a group of order 2p. This problem shows that G is isomorphic to $\mathbb{Z}/2p\mathbb{Z}$ or D_p .
 - (a) Prove that G has an element a of order p and an element b of order 2.
 - (b) Prove that there is a t so that $bab = a^t$. Furthermore, show that $a^{t^2} = a$. From this, conclude that $t \equiv \pm 1 \pmod{p}$.
 - (c) Prove that G is isomorphic to $\mathbb{Z}/2p\mathbb{Z}$ or D_p .
- 6. Let $G = \operatorname{SL}_2(\mathbb{Z}/3\mathbb{Z})$.
 - (a) Find |G|.
 - (b) Give all 3-Sylow subgroups of G.
 - (c) Prove that the subgroup of G generated by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ is the unique 2-Sylow subgroup of G.
 - (d) Show that $Z(G) = \pm 1_2$ where $1_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Use this to show that $G/Z(G) \sim A_4$.