MATH 8510 - Fall 2014 Homework 7

Due: Thursday, October 30

- 1. Let K be a field. A *discrete valuation* on K is a function $\nu : K^* \longrightarrow \mathbb{Z}$ satisfying
 - ν is a homomorphism from the multiplicative group K^* to the additive group \mathbb{Z}
 - ν is surjective
 - $\nu(x+y) \ge \min\{\nu(x), \nu(y)\}$ for all $x, y \in K^*$ with $x+y \ne 0$.

The set $R = \{x \in K^* : \nu(x) \ge 0\} \cup \{0\}$ is called the *valuation ring* of ν .

- (a) Prove that R is a subring of K that contains the identity. (A ring R is called a *valuation ring* if there is a field K and a discrete valuation ν so that R is the valuation ring of ν .)
- (b) Prove that for each $x \in K^*$, either x or x^{-1} is in R.
- (c) Prove that $x \in R^*$ if and only if $\nu(x) = 0$.
- (d) Let $K = \mathbb{Q}$ and let p be a prime in \mathbb{Z} . Define $\nu_p : \mathbb{Q}^* \to \mathbb{Z}$ by $\nu_p\left(\frac{a}{b}\right) = r$ where $\frac{a}{b} = p^r \frac{c}{d}$ with $p \nmid cd$. Check that ν_p is a valuation. Describe the valuation ring and the units of the valuation ring.
- 2. Let R be a ring and G a group.
 - (a) The *center* of a ring R is the set

$$Z(R) = \{ z \in R : zr = rz \text{ for all } r \in R \}.$$

Prove the center is a subring of R.

- (b) If $G = \{g_1, \ldots, g_n\}$, prove that the element $g_1 + \cdots + g_n$ is in the center of the group ring R[G].
- (c) Let $R = \mathbb{Z}$ and $G = S_3$. Let $\alpha = 3(12) 5(23) + 14(123)$ and $\beta = 6(1) + 2(23) 7(132)$ be elements of R[G]. Compute $2\alpha 3\beta$, $\alpha\beta$, and α^2 .
- 3. Let R and S be nonzero ring. Let $\varphi : R \to S$ be a nonzero homomorphism of rings.
 - (a) Prove that if $\varphi(1) \neq 1$, then $\varphi(1)$ is a zero divisor in S. Deduce that if S is an integral domain then every ring homomorphism from R to S sends the identity of R to the identity of S.
 - (b) Prove that if $\varphi(1) = 1$ then $\varphi(u)$ is a unit in S and that $\varphi(u^{-1}) = \varphi(u)^{-1}$ for each $u \in R^*$.
- 4. Let $\varphi : R \to S$ be a homomorphism of commutative rings.
 - (a) Prove that if p is a prime ideal of S, then either φ⁻¹(p) = R or φ⁻¹(p) ∈ Spec(R). Apply this to the special case when R is a subring of S and φ the inclusion map to conclude that if p is a prime ideal of S, then p ∩ R is either R or in Spec(R).
 - (b) Prove that if m ∈ M-Spec(S) and φ is surjective, then φ⁻¹(m) ∈ M-Spec(R). Is this still true if one removes the assumption that φ is surjective? If it is true, prove it. If not, give a counter-example.
- 5. Let R be a commutative ring.
 - (a) We say an element $x \in R$ is *nilpotent* if $x^n = 0$ for some $n \in \mathbb{Z}_{>0}$. The set of nilpotent elements is denoted $\mathfrak{N}(R)$ and called the *nilradical* of R. Prove the nilradical is an ideal.
 - (b) Let I be an ideal in R. Define the *radical of* I to be

$$\operatorname{rad}(I) = \{ x \in R : x^n \in I \text{ for some } n \in \mathbb{Z}_{>0} \}.$$

Prove that rad(I) is an ideal containing I and (rad(I))/I is the nilradical of the quotient ring R/I.

- (c) Let Jac(I) be the intersection of all maximal ideals in R containing I. Prove this is an ideal containing I. This ideal is known as the Jacobson radical of I.
- (d) Prove that $rad(I) \subseteq Jac(I)$.
- (e) Let $n \in \mathbb{Z}_{>1}$. Describe $Jac(n\mathbb{Z})$ in terms of the prime factorization of n.
- 6. Let $x^2 + x + 1 \in R = \mathbb{F}_2[x]$ and use bar notation to denote passage to the quotient ring $R/(x^2 + x + 1)$.
 - (a) Prove that \overline{R} has 4 elements.
 - (b) Write out the addition table for \overline{R} and deduce that the additive group \overline{R} is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (c) Write out the multiplication table for \overline{R} and prove that \overline{R}^* is isomorphic to $\mathbb{Z}/3\mathbb{Z}$. Deduce that \overline{R} is a field.
- A proper ideal Q of a commutative ring R is called *primary* if whenever xy ∈ Q and x ∉ Q then yⁿ ∈ Q for some n ∈ Z_{>0}. Prove the following facts about primary ideals.
 - (a) The primary ideals of \mathbb{Z} are (0) and $p^n \mathbb{Z}$ where p is prime and $n \in \mathbb{Z}_{>0}$.
 - (b) Every prime ideal of R is a primary ideal.
 - (c) An ideal Q of R is primary if and only if every zero divisor in R/Q is in $\mathfrak{N}(R/Q)$.
 - (d) If \mathcal{Q} is a primary ideal then $rad(\mathcal{Q}) \in Spec(R)$.