MATH 8530 - Fall 2015 Homework 4

Due: Oct. 27 (Tuesday)

QUESTION 1.

Find the eigenvalues and corresponding eigenvectors for the following matrices over C.

$$(a) \quad \begin{bmatrix} 3 & 2 \\ -2 & 3 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 3 & 2 \\ -2 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$.

$$\begin{array}{cccc}
(c) & \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}
\end{array}$$

QUESTION 2.

- 1. Show that if A and B are similar, then A and B have the same eigenvalues.
- 2. Is the converse of Part (a) true? Prove or disprove.

QUESTION 3.

Let A_{θ} be a 3 \times 3 matrix representing a rotation of \mathbb{R}^3 through an angle θ about the y-axis.

- 1. Find the eigenvalues for A_{θ} over \mathbb{C} .
- 2. Determine necessary and sufficient conditions on θ in order for A_{θ} to contain three linearly independent eigenvectors in \mathbb{R}^3 . Justify your claim and interpret it geometrically.

QUESTION 4.

Let A be a 2×2 matrix over \mathbb{R} satisfying $A^T = A$. Prove that A has 2 linearly independent eigenvectors in \mathbb{R}^2 .

QUESTION 5.

Let A be an invertible $n \times n$ matrix. Prove that A^{-1} can be written as a polynomial in degree at most n-1. That is, prove that there are scalars c_i such that

$$A^{-1} = c_{n-1}A^{n-1} + c_{n-2}A^{n-2} + \cdots + c_1A + c_0I.$$