MATH 8530 - Fall 2015 Homework 5

Due: Nov. 3 (Tuesday)

QUESTION 1.

Fix a matrix $A \in \mathbb{R}^{3\times 3}$. We define a linear operator $T : \mathbb{R}^{3\times 3} \to \mathbb{R}^{3\times 3}$ by T(B) = AB for all $B \in \mathbb{R}^{3\times 3}$. Find the characteristic polynomial of the map T.

QUESTION 2.

- 1. Let $A \in \mathbb{F}^{n \times n}$. Prove that $A \in GL_n(\mathbb{F})$ if and only if 0 is not an eigenvalue of A.
- 2. Let $\lambda \in \mathbb{F}$ be and eigenvalue of $A \in \operatorname{GL}_n(\mathbb{F})$. Prove that λ^{-1} is an eigenvalue of A^{-1} .

QUESTION 3.

- 1. Let $P(x) = \sum_{i=1}^{d} P_i x^i$, $Q(x) = \sum_{j=1}^{t} Q_j x^j \in \mathbb{F}^{n \times n}[x]$ and R(x) = P(x)Q(x). Prove that for a matrix $A \in \mathbb{F}^{n \times n}$ satisfying $Q_j A = AQ_j$ for all $j = 1, \ldots, t$ it holds R(A) = P(A)Q(A).
- 2. For n = 2, find an example of P(x) and Q(x) such that $R(B) \neq P(B)Q(B)$ for some nn matrix B.

QUESTION 4.

Let A be an $n \times n$ matrix over \mathbb{C} with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. For a vector $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, define the *norm* of z by

$$||z|| = \left(\sum_{i=1}^{n} |z_i|\right)^{1/2}$$

- 1. Prove that if $|\lambda_i| < 1$ for all *i*, then $||A^N z|| \to 0$ as $N \to \infty$ for all $z \in \mathbb{C}^n$.
- 2. Prove that if $|\lambda_i| > 1$ for all i, then $||A^N z|| \to \infty$ as $N \to \infty$ for all nonzero $z \in \mathbb{C}^n$.

QUESTION 5.

Let A be an $n \times n$ matrix over \mathbb{C} with an eigenvalue λ of index $m \ge 2$ and corresponding eigenvector v_1 . Let v_2 be a generalized eigenvector satisfying $(A - \lambda I)v_2 = v_1$.

1. Prove that for any natural number N it holds $A^N v_2 = \lambda^N v_2 + N \lambda^{N-1} v_1$.

2. Prove that for any polynomial $q(x) \in \mathbb{C}[x]$,

$$q(A)v_2 = q(\lambda)v_2 + q'(\lambda)v_1,$$

where q'(x) is the derivative of q.

3. Conjecture a formula for $q(A)v_m$, where v_1, \ldots, v_m are generalized eigenvectors of A with $(A - \lambda I)v_k = v_{k-1}$ (and say $v_0 = 0$, for convenience).