MATH 8530 - Fall 2015

Homework 6

Due: Nov. 10 (Tuesday)

QUESTION 1.

Let X be an n-dimensional vector space, and $A\colon X\to X$ a linear map with distinct eigenvalues $\lambda_1,\ldots,\lambda_n$. Let v_1,\ldots,v_n be the corresponding eigenvectors of A, and let ℓ_1,\ldots,ℓ_n be the corresponding eigenvectors of the transpose $A'\colon X'\to X'$.

- 1. Prove that $(\ell_i, v_i) \neq 0$ for $i = 1, \dots, n$.
- 2. Show that if $x = a_1v_1 + \cdots + a_nv_n$, then $a_i = (\ell_i, x)/(\ell_i, v_i)$.
- 3. Is ℓ_1, \ldots, ℓ_n necessarily the dual basis of v_1, \ldots, v_n ? Why or why not?

QUESTION 2.

Compute the Jordan canonical form and provide the matrix of change of basis for

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ -4 & -2 & -1 & -2 \\ -2 & -3 & 2 & -4 \end{pmatrix}$$

QUESTION 3.

et A be a matrix with distinct eigenvalues $\lambda_1,\ldots,\lambda_k$. The *index* of λ_i is the minimum integer d_i such that $(A-\lambda_i I)^{d_i}=0$ but $(A-\lambda_i I)^{d_i-1}\neq 0$.

1. Prove, using the spectral theorm but without appealing to Jordan canonical form, that the minimal polynomial of A is

$$m_A(s) = \prod_{i=1}^k (s - \lambda_i)^{d_i}.$$

2. Give a simple proof using the Jordan canonical form.

QUESTION 4.

Find a list of real matrices, as long as possible, such that:

- 1. The characteristic polynomial of each matrix is $p(s) = (s-1)^5(s+1)$.
- 2. The minimal polynomial of each matrix is $m(s) = (s-1)^2(s+1)$.
- 3. No two matrices in the list are similar to each other.

QUESTION 5. Let $X \subset \mathbb{R}[x,y]$ be the space of polynomials in x,y of total degree $\leq n$. Find the dimension of

X, show that the map

$$A: X \longrightarrow X, \qquad f \longmapsto f + \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$$

is linear, and find its Jordan canonical form. [Hint: First find all eigenvectors.]