QUESTION 1. Log likelihood ratio.

Let \(S = (\mathbb{F}_2, p(y \mid x), \mathcal{Y}) \) be a binary memoryless channel such that \(p(y \mid x) \geq 0 \) for any \(y \in \mathcal{Y} \) and \(x \in \mathbb{F}_2 \). The log likelihood ratio for a \(y \in \mathcal{Y} \) is

\[
\mu(y) := \log_2 \left(\frac{p(y \mid 0)}{p(y \mid 1)} \right).
\]

Let \(C \) be a \((n, M)\) code over \(\mathbb{F}_2 \), and define the decoder \(D : \mathcal{Y}^n \to C \) such that for any \(y = (y_1, \ldots, y_n) \in \mathcal{Y}^n \)

\[
D(y) = \arg\max_{c \in C} \sum_{i=1}^{n} (-1)^{c_i} \mu(y_i).
\]

Show that \(D \) is a maximum-likelihood decoder for \(C \) with respect to \(S \).

QUESTION 2. Decoding failure

Show that for every \((n, M, d)\) code \(C \) over \(X \) and for every decoder \(D : X^n \to C \), there is a codeword \(c \in C \) and a vector \(y \in X^n \) such that \(d(y, c) \leq \lfloor (d + 1)/2 \rfloor \) and \(D(y) \neq c \).

QUESTION 3. Some properties of linear codes

Let \(C \subset \mathbb{F}_2^n \) be a \([n, k] \) linear code.

1. Show that either any codeword has even weight, or exactly half of them have even weight.
2. If \(C \) has a codeword of odd weight, then show that the even weight codewords of \(C \) form an \([n, k - 1] \) linear code.
3. Show that either all codewords in \(C \) begin with zero, or exactly half of them begin with zero.
4. Show that the sum of the weights of all codewords in \(C \) is at most \(n2^{k-1} \).

QUESTION 4. Puncturing a linear code

Let \(C \) be a linear \([n, k, d] \) code over a field \(F \). For \(i = 1, \ldots, n \) denotes with \(C_i \) the code

\[
C_i := \{(c_1, \ldots, c_{i-1}, c_{i+1}, \ldots, c_n) \mid (c_1, \ldots, c_n) \in F^n \}.
\]

The code \(C_i \) is said to be obtained by puncturing \(C \) at the \(i \)-th coordinate.

- Show that \(C_i \) is a linear \([n - 1, k_i, d_i] \) code over \(F \) where \(k_i \geq k - 1 \) and \(d_i \geq d - 1 \).
- Show that there are at least \(n - k \) indices \(i \) for which \(k_i = k \).