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In this essay, we will “discover” the dual problem associated with an LP. We will
see how to interpret the meanings of the dual decision variables in the context of the
original problem, and we will present some theorems (“facts”) about the relationship
between the optimal primal and dual solutions that will lead us to the key ideas of
the simplex method for solving LPs.

1 The Dual of an LP

Consider the fertilizer manufacturer’s problem from Murty [1], Section 2.1:

Maximize 15x1 + 10x2 = z

subject to 2x1 + x2 ≤ 1500
x1 + x2 ≤ 1200
x1 ≤ 500

x1, x2 ≥ 0

(1)

In this example, x1 and x2 represent the amount (in tons) of Hi-Ph and Lo-Ph
fertilizer products, respectively, to be produced each day. The right-hand sides
represent the amounts (in tons) of ingredients RM1, RM2, and RM3 available each
day. The objective function coefficients represent the profit ($/ton) for each product,
and the technology coefficients represent the amounts of each ingredient required
to produce each product. Thus, it requires two tons of RM1 to produce one ton of
Hi-Ph, etc. The units on these coefficients are in units of tons of ingredient per ton
of product.

In our search for the optimal solution to this problem, we can generate lower
bounds on the optimal value of z by generating feasible solutions to the problem. For
example, if we propose the production of 500 tons of Hi-Ph and 500 tons of Lo-Ph,
the solution is represented as x = (500, 500) and the objective value is z = 12500. It
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is clear that any optimal solution must generate at least $12,500 in profit, because
at least one feasible solution does. But it is difficult to tell for a general, large LP
(although not too difficult for this example), how much more profit we might expect
(or indeed if the optimal profit is even finite). It would be useful to be able to
generate upper bounds on the optimal objective value as well.

We can generate such upper bounds by constructing an inequality (of the less-
than-or-equal variety) satisfied by every feasible solution, and such that, for any
feasible solution, the left-hand side is always at least as large as the objective function
value and the right-hand side is a constant. If we had such an inequality α1x1 +
α2x2 ≤ zU , then we could conclude that, for any feasible solution,

z = 15x1 + 10x2 ≤ α1x1 + α2x2 ≤ zU .

What conditions must our inequality satisfy? Since x1 and x2 are nonnegative,
α1x1 + α2x2 will be larger than z if α1 ≥ 15 and α2 ≥ 10. In order to ensure
that every feasible x satisfies the inequality, we must construct it from the original
constraints in a way that preserves feasibility and the less-than-or-equal senses of
the originals. For example, we get one such inequality if we multiply both sides of
the first constraint by 10, yielding

20x1 + 10x2 ≤ 15000.

If we add five times the first inequality to five times the second, we get the better
bound

15x1 + 10x2 ≤ 13500.

Let us consider linear combinations of the LP constraints, with multipliers π1,
π2, and π3, respectively. Then the coefficients of the generated inequality are

α1 = 2π1 + π2 + π3,

α2 = π1 + π2,

zU = 1500π1 + 1200π2 + 500π3.

The multipliers we need must be nonnegative (to preserve the less-than-or-equal
sense of the inequalities), and the resulting coefficients must be at least as large as
the corresponding objective coefficients, to guarantee that the new left-hand side is
at least as large as the objective value, for any feasible solution. The multipliers
that give us the best upper bound are (remarkably) the solutions to the following
LP:

Minimize 1500π1 + 1200π2 + 500π3 = zU
subject to 2π1 + π2 + π3 ≥ 15

π1 + π2 ≥ 10
π1, π2, π3 ≥ 0

(2)
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The LP (2) is called the dual of the LP (1). The LP (1) is called the primal problem.
(The problem you start with the always the primal and the bounding problem is
always the dual.)

2 General LPs, Their Duals, and Standard Form

The example above is a special case of LPs of the form

Maximize cx

subject to Ax ≤ b
x ≥ 0,

(3)

where c is a row vector (1×n matrix), A is m×n, and b is m× 1. By the reasoning
above, the dual of such an LP is

Minimize πb

subject to πA ≥ c
π ≥ 0,

(4)

where π is a 1×m row vector.
It doesn’t matter, though, whether the primal LP is in this particular form.

We can construct the dual of any LP using reasoning similar to the above. For
example, suppose the primal objective is to be maximized and a constraint is of
the greater-than-or-equal variety. To use the constraint to get an upper bound, it
must be multiplied by a non-positive scalar to change its sense. If the constraint
is an equation, then its multiplier may have either sign. If a primal variable is
unrestricted in sign, the corresponding coefficient in the bounding inequality must
be equal to the objective coefficient. If the primal objective is to be minimized, then
the dual objective is to be maximized, and the generated constraint must be of the
greater-than-or-equal variety. These conclusions are summarized in Table 1.

Despite the fact that we can produce the dual for any LP, it is convenient when
discussing the relationship between primal and dual problems to restrict our atten-
tion to problems with a particular form. Although some books discuss the primal-
dual pair (3) and (4) (sometimes called canonical form or symmetric form), we will
find it most useful to discuss the following primal-dual pair (usually called standard
form):

Minimize cx

subject to Ax = b

x ≥ 0,
(5)
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Primal minimization/Dual maximization

Primal Dual Primal Dual
Variables Constraints Constraints Variables

≥ 0 ≤ ≥ ≥ 0
≤ 0 ≥ ≤ ≤ 0

Unrestricted = = Unrestricted

Primal maximization/Dual minimization

Primal Dual Primal Dual
Variables Constraints Constraints Variables

≥ 0 ≥ ≥ ≤ 0
≤ 0 ≤ ≤ ≥ 0

Unrestricted = = Unrestricted

Table 1: Relationship between primal and dual variables and constraints.

and

Maximize πb

subject to πA ≤ c
π unrestricted.

(6)

We can do this without loss of generality, because it is possible to transform
any LP into an equivalent standard-form LP. We will discuss some key rules for
doing this now, and put off a few others until later. Note that LP solvers work in-
ternally with a minor extension to standard form, where free variables and bounds
on variables are handled directly. We won’t discuss this version, because it compli-
cates the description of the simplex method. Also note that modeling languages like
LINGO handle the conversion to standard form automatically—the user can enter
the constraints in any convenient form.

1. To convert a maximization problem to a minimization problem, multiply all
coefficients by −1. Thus in our example problem, the objective becomes

Minimize − 15x1 − 10x2.

2. To convert a less-than-or-equal constraint to an equation, include a slack vari-
able and constrain it to be nonnegative. The first constraint in the example
becomes

2x1 + x2 + x3 = 1500

x3 ≥ 0.
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You need a different variable for each such constraint, so the remaining con-
straints are

x1 + x2 + x4 = 1200

x1 + x5 = 500

x4, x5 ≥ 0.

3. For a greater-than-or-equal constraint, subtract a nonnegative surplus variable.
Thus, for example, the inequality

3x1 − 2x2 ≥ 400

becomes

3x1 − 2x2 − xs = 400

xs ≥ 0

4. For a variable with finite upper and lower bounds, incorporate the upper bound
explicitly into the constraints, and treat the lower bound as described below.

5. To convert a variable xj ≥ lj with a nonzero lower bound to one with a zero
lower bound, define yj = xj− lj. It is clear that whenever xj ≥ lj, then yj ≥ 0.
Make the substitution xj = yj + lj in the LP, and collect the constant column
ljA·j on the right hand side. Thus if our fertilizer problem had the minimum
production requirement x1 ≥ 100, we would define y1 = x1−100. Substituting
x1 = y1 + 100 into the problem gives

Maximize 15(y1 + 100) + 10x2 = z

subject to 2(y1 + 100) + x2 + x3 = 1500
(y1 + 100) + x2 + x4 = 1200
(y1 + 100) + x5 = 500

y1, x2, . . . , x5 ≥ 0

(7)

or equivalently,

Maximize 15y1 + 10x2 = z − 1500
subject to 2y1 + x2 + x3 = 1300

y1 + x2 + x4 = 1100
y1 + x5 = 400

y1, x2, . . . , x5 ≥ 0

(8)
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Note the constant adjustment to the objective function—the result of solving
the LP with y1 will be $1500 too low, since y1 only gives the excess production
of HiPh over 100 tons.

6. To convert a variable xj ≤ uj with a finite upper bound and no lower bound,
define yj = uj − xj and make the substitution xj = uj − yj, as above.

7. For unrestricted variables, Murty describes a process of using equality con-
straints to substitute them out of the problem. (Note that if we run out of
equations before we run out of free variables, then the problem is unbounded.)
A technique that does somewhat less violence to the formulation is to define
two new variables for each free variable: xj = x+

j − x
−
j , where x+

j , x
−
j ≥ 0.

Now whatever value xj takes on, there are many possible values for x+
j and

x−j . Of particular interest are the ones where exactly one of x+
j and x−j is zero.

For example, if xj = 3, then x+
j = 3 and x−j = 0, and if xj = −2 then x+

j = 0

and x−j = 2. In the simplex method, it is guaranteed that the final values of

x+
j and x−j will have one of these forms.

The conversion of the example problem to standard form gives:

Minimize −15x1 − 10x2 = z

subject to 2x1 + x2 + x3 = 1500
x1 + x2 + x4 = 1200
x1 + x5 = 500

x1, . . . , x5 ≥ 0

(9)

The dual of this problem is

Maximize 1500π1 + 1200π2 + 500π3 = zU
subject to 2π1 + π2 + π3 ≤ −15

π1 + π2 ≤ −10
π1 ≤ 0

π2 ≤ 0
π3 ≤ 0

(10)

which is easily seen to be equivalent to (2). (Note that in this version the dual
variables are restricted to be nonpositive. They are just the negatives of the variables
in (2). Also note that the interpretation described below now applies to the negatives
of these variables.)
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3 Economic Interpretation of Dual Variables

LPs that represent problems from the real world have coefficients that correspond in
a meaningful way to real quantities being modeled, and they have units associated
with them. We can use this information to impose an interpretation on the dual
multipliers. In our example, the dual constraints are

2π1 + π2 + π3 ≥ 15

and

π1 + π2 ≥ 10.

From the original problem, the coefficients have units “tons of ingredient RMi per
ton of product” and the right hand sides have units “$ per ton of product”. This
forces the πis to have units “$ per ton of ingredient RMi”, in order to make the
values on both sides of the inequalities comparable. The dual objective

1500π1 + 1200π2 + 500π3

has the units “$”, just as the primal objective does. We can interpret the entire
example dual problem from the point of view of an investor interested in purchasing
resources from the producer who is solving the primal problem. The dual variables
represent premiums (over cost) to be paid for each unit of resource bought by the
investor. We call the dual variables shadow prices for the resources. The dual con-
straints ensure that the premium paid for a “package” of resources used to produce
a unit of (say) Hi-Ph is at least equal to the profit for that unit. If a proposed set of
prices violates the dual constraint corresponding to Hi-Ph, then the producer would
refuse to sell the package of resources, preferring instead to use them to produce
Hi-Ph. The investor’s objective is to minimize the amount offered for the entire set
of resources.

It seems clear that the investor will have to offer prices such that the total
value is at least equal to the maximum profit that the producer could make using
the resources to manufacture product. In fact, the relationship between primal
and dual solutions ensures that the best prices give a minimum total value for the
resources exactly equal to the maximum profit to be made by using the resources
in production. These and other relationships between primal and dual solutions are
explored below.

4 Duality, Optimality, and Complementarity

The following theorems describe the relationship between optimal solutions to a
primal-dual pair of LPs. The results are presented for problems in standard form,
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but similar results hold for any primal-dual pair.

Theorem 1 The dual of (6) is (5).

To see that this is true, we can convert (6) to standard form:

1. Begin with (6):

Maximize πb

subject to πA ≤ c
π unrestricted.

2. Substitute for the unrestricted variables π = π+ − π− where π+, π− ≥ 0, add
dual slacks, and convert to minimization form:

Minimize −π+b+ π−b

subject to π+A− π−A+ c̄ = c

π+, π−, c̄ ≥ 0.

3. Take the dual:

Maximize cx

subject to Ax ≤ −b
−Ax ≤ b
x ≤ 0.

4. Combine the inequalities, substitute x̂ = −x, and convert to minimization
form:

Minimize cx̂

subject to Ax̂ = b

x̂ ≥ 0.

Alternatively, we could have constructed the dual directly using the rules in Table 1.

Theorem 2 (Weak Duality) If x̄ is a feasible solution to (5) and π̄ is a feasible
solution to (6), then

cx̄ ≥ π̄b.

This theorem implies that any feasible shadow prices value the resources at a level
at least equal to the profit to be made by turning the resources into product in any
feasible mix.
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Primal
Dual Feasible Infeasible Unbounded

Feasible Yes No No

Infeasible No Yes Yes

Unbounded No Yes No

Table 2: Possible relationships between primal and dual solutions.

Theorem 3 (Strong Duality) If (5) has an optimal solution x∗, then (6) has an
optimal solution π∗, and

cx∗ = π∗b.

This theorem implies that the best shadow prices value the resources at a level ex-
actly equal to the profit for the best production plan. It also has some consequences
in the case where one or the other LP is unbounded or infeasible. Table 2 lays out
the possible combinations of primal and dual solutions.

If we include slack variables in (6), we get the equivalent dual problem

Maximize πb

subject to πA+ c̄ = c

π unrestricted, c̄ ≥ 0,
(11)

and the dual slacks are defined to be

c̄ = c− πA.

In our example problem (10):

c̄1 = −15− 2π1 − π2 − π3 (12)

c̄2 = −10− pi1 − π2 (13)

c̄3 = 0− π1 (14)

c̄4 = 0− π2 (15)

c̄5 = 0− π3. (16)

These dual slacks are also called reduced costs or relative costs (if the primal problem
is a minimization) or relative profits (if the primal problem is a maximization).
The slack corresponding to the jth constraint indicates the amount by which the
valuation of the package of resources used in product j exceeds the profit to be made
on a unit of product j.
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The following theorem describes the relationship between primal decision vari-
ables and dual slacks at optimality.1

Theorem 4 (Complementary Slackness (Karush-Kuhn-Tucker)) If x∗ and
π∗ are solutions to (5) and (6), respectively, then they are optimal solutions if and
only if

1. x∗ is primal feasible;

2. π∗ is dual feasible (i.e., c̄ ≥ 0); and

3. At least one of each pair (xj, c̄j) is zero for j = 1, . . . , n (alternatively, xj c̄j = 0
for j = 1, . . . , n).

For the fertilizer example in standard form, consider the primal solution x̄ =
(300, 900, 0, 0, 200)T and the dual solution π̄ = (−5,−5, 0). Then c̄ = (0, 0, 5, 5, 0).
It is clear that c̄ ≥ 0 and x̄j c̄j = 0 for j = 1, . . . , 5, so this primal-dual pair of
solutions is optimal. Both primal and dual solutions have objective value −13500.

4.1 Complementarity and Optimality

The KKT theorem suggests a strategy for testing if a proposed primal solution x̄ is
optimal, namely:

1. Construct all complementary dual solutions.

2. If any complementary dual solution is dual feasible, then the primal solution
is optimal.

For example, consider the solution x̄ = (500, 500, 0, 200, 0)T to (9). A comple-
mentary dual solution must satisfy the equations

2π1 + π2 + π3 = −15
π1 + π2 = −10

π2 = 0

The unique solution to these equations is π̄ = (−10, 0, 5). This solution is not dual
feasible, since it violates the last inequality in (10).

The only problem we face is that a given x̄ may not lead to a unique complemen-
tary π̄. There may be no complementary dual solution, in which case the primal x

1If you studied constrained optimization at all in Calculus, you will recognize the shadow prices
as Lagrange multipliers. The KKT theorem describes the optimality conditions for a constrained
optimization problem, here specialized to the case of linear objective and linear constraints.
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is not optimal, or there may be many such solutions, in which case additional effort
is required to determine if any of them are dual feasible. To avoid having to deal
with these problems, we turn our attention to a systematic method of generating
complementary primal-dual pairs.

5 Bases and Basic Solutions

Consider the system of constraint equations Ax = b from the standard-form LP (5).
We can assume without loss of generality that A is m × n, with m ≤ n, and that
rank(A) = m. Recall that rank(A) = m means that we can find up to m linearly
independent columns in A. Suppose we select such a set and use them to form the
matrix B. With the leftover columns, form the matrix N . Then we can reorder the
columns in A so that the basic columns are at the left, and reorder the components
of c x the same way, and call the basic components cB and xB and the nonbasic
components cN and xN . The LP can be rewritten as follows:

Minimize cx

subject to Ax = b

x ≥ 0,

Minimize cBxB + cNxN
subject to BxB +NxN = b

xB ≥ 0, xN ≥ 0.

The dual can also be rewritten as follows:

Maximize πb

subject to πA ≤ c
π unrestricted.

Maximize πb

subject to πB ≤ cB
πN ≤ cN

π unrestricted.

Since the columns of B are linearly independent (B is m×m with rank(B) = m),
B must be nonsingular, with inverse B−1. Multiplying both sides of the primal
constraint equation by B−1 and solving for xB gives

xB = B−1b−B−1NxN ,

the formula for values of the basic variables in terms of the nonbasic variables. These
equations, together with the equations xN = 0 (from the nonnegativity constraints),
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form a system of n linearly independent equations in n unknowns, and has a unique
solution, namely

xB = B−1b; xN = 0.

This solution is called the basic primal solution corresponding to the basis B. If
xB ≥ 0, then this solution x is feasible for the LP, and it is called a basic feasible
solution or BFS. (But for a particular choice of B, the corresponding basic primal
solution may not be feasible.)

If xB > 0, then the complementarity conditions would require that the dual
slacks corresponding to B and cB be satisfied with equality. Again, we can multiply
both sides by B−1 (on the right this time) to get the solution:

πB = cB

π = cBB
−1

This π is called the basic dual solution corresponding to the basis B.
Since these solutions are complementary, the KKT theorem applied to the solu-

tions corresponding to a basis B says that if xB ≥ 0 and πN ≤ cN then x and π are
an optimal primal-dual pair.

In our example problem, consider the basis formed by columns 1, 2, and 4 (in
that order). Then we have

xB = (x1, x2, x4)
T xN = (x3, x5)

T

cB = (−15,−10, 0) cN = (0, 0)

B =

2 1 0
1 1 1
1 0 0

 N =

1 0
0 0
0 1


Then

B−1 =

 0 0 1
1 0 −2
−1 1 1


and the corresponding primal and dual solutions are xB = (500, 500, 200)T , xN =
(0, 0)T ), or x = (500, 500, 0, 200, 0)T , and π = (−10, 0, 5). The primal solution is
feasible, hence a BFS, but the dual solution is not, so we conclude that this is not
an optimal primal-dual pair.
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On the other hand, consider the basis formed by columns 1, 2, and 5 (in that
order). Then we have

xB = (x1, x2, x5)
T xN = (x3, x5)

T

cB = (−15,−10, 0) cN = (0, 0)

B =

2 1 0
1 1 0
1 0 1

 N =

1 0
0 1
0 0


Then

B−1 =

 1 −1 0
−1 2 0
−1 1 1


and the corresponding primal and dual solutions are xB = (300, 900, 200)T and
xN = (0, 0)T , or x = (300, 900, 0, 0, 200)T , and π = (−5,−5, 0). The primal solution
is feasible, hence a BFS, and the dual solution is as well, so we conclude that this
is an optimal primal-dual pair.

A Complementarity for Canonical Problems

Comparison of primal problems (1) and (9) and dual problems (2) and (10) suggests
that, when slack variables are added to convert a canonical primal problem to stan-
dard form, the corresponding dual constraints simply impose the sign constraints
on the dual variables. More generally, we can write the conversion steps to get from
primal to dual as follows:

1. Begin with the canonical primal problem:

Maximize cx

subject to Ax ≤ b
x ≥ 0.

2. Convert to standard form by adding slack variables s:

Minimize −cx− 0s
subject to Ax+ Is = b

x, s ≥ 0.
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3. Take the dual:

Maximize πb

subject to πA ≤ −c
πI ≤ 0.

4. Substitute π = −π̂:

Maximize −π̂b
subject to −π̂A ≤ −c

−π̂I ≤ 0.

5. Switch from maximization to minimization, multiply constraints through by
−1, cancel the multiplication by I:

Minimize π̂b

subject to π̂A ≥ c
π̂ ≥ 0.

By exploiting this knowledge of the structure of canonical problems, and observ-
ing that the definitions of the dual slacks associated with the sign constraints in
standard form reduce to c̄j = −πj (so c̄j = 0 if and only if pi = 0), we can write a
KKT theorem for canonical problems.

Theorem 5 (Complementary Slackness—Canonical Form) A primal-dual pair
of solutions x∗ and π∗ to (3) and (4), respectively, is optimal if and only if

1. x∗ is feasible;

2. π∗ is feasible;

3. whenever x∗j > 0, then π∗A·j = cj; and

4. whenever π∗A·j > cj, then x∗j = 0.

For the fertilizer example in canonical form, consider the primal solution x̄ =
(300, 900)T and the dual solution π̄ = (−5,−5, 0). Then the slacks for the primal
constraints are s̄ = (0, 0, 200)T and the slacks for the dual constraints are c̄ = (0, 0).
It is clear that x̄j c̄j = 0 for j = 1, 2 and siπi = 0 for i = 1, 2, 3, so this primal-dual
pair of solutions is optimal. Both primal and dual solutions have objective value
13500.
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