
A Tutorial on Network Optimization

Gérard Cornuéjols and Michael A. Trick

Summer, 1994

1 Introduction

Seervada Park has recently been opened to sightseeing and backpacking.
Cars are not permitted in the park, but there is a narrow, winding, set of
trails that are used by the rangers’ jeeps and by a tram system that takes
tourists from the entry point to a spectacular set of falls. The trail system
looks like Figure 1, where a trail is represented by a line, and the meeting
of two or more trails is represented by a circle. At every such meeting point
there is a ranger station. The number beside a line is the length of that path
in miles.

13

4

4

1

4

2

7

5

2

E

DB

C

O

A

T7

5

Figure 1: Seervada Park

1

The park management has three problems to solve. The first is to find
the best path from the entrance (O) to the waterfalls (T). Here, “best” is
defined to be the shortest path from O to T . This is an example of the
shortest path problem.

The second problem is that a telephone system must be installed under
the road to link all the stations (including the entrance and the waterfall’s
station). Because installation is expensive and disruptive to the unique ecol-
ogy of the park, only enough lines will be installed so that there is some
connection between every pair of stations. The objective is to minimize the
miles of lines that must be installed. This is an example of the minimum
spanning tree problem.

Finally, the third problem is that during certain periods (like the Labor
Day weekend) more people wish to use the tram than can be accommodated.
To avoid unduly disturbing the wildlife and ecology of the park, strict lim-
itations on the number of trams that can use each trail segment have been
placed. Therefore, during the peak season, various routes might be used by
the trams in order to maximize the number of tourists served. The problem
is to determine the maximum number of trips per day that can be done with-
out violating the capacity restrictions. This is an example of the maximum
flow problem.

2 Terminology

A network or graph consists of points, and lines connecting pairs of points.
The points are called nodes or vertices. The lines are called arcs. The arcs
may have a direction on them, in which case they are called directed arcs.
If an arc has no direction, it is often called an edge. If all the arcs in a
network are directed, the network is a directed network. If all the arcs are
undirected, the network is an undirected network.

Two nodes may be connected by a series of arcs. A path is a sequence
of distinct arcs (no nodes repeated) connecting the nodes. A directed path
from node i to node j is a sequence of arcs, each of whose direction (if any)
is towards j. An undirected path may have directed arcs pointed in either
direction.

A path that begins and ends at the same node is a cycle and may be
either directed or undirected.

A network is connected if there exists an undirected path between any

2

pair of nodes. A connected network without any cycle is called a tree, mainly
because it looks like one.

3 Shortest Paths

Consider an undirected and connected network with two special nodes, called
the origin and destination. Associated with each edge is a distance, a non-
negative number. The objective is to find a shortest path between the origin
and destination.

There is a very fast algorithm for this problem. The essence is to explore
outward from the origin, successively finding the shortest paths to nodes in
the network until the destination is reached.

Consider the park example, with origin O and destination T . Looking
just locally, we can determine that we can reach the following nodes at the
given distances:

• A: distance 2

• B: distance 5

• C: distance 4

Now consider the closest node, in this case node A. We can reach it directly
in distance 2. Might we find another path from O to A that is shorter? Of
course not! We would have to go through another node, and we already know
that all other nodes are at least distance 2 away from O. Therefore we know
that A is the closest node to O and has distance 2.

What is the second closest node to O? The key to finding this is to know
the following (due to Dijkstra):

If we have found the kth closest nodes to O, then the k + 1st closest has
a path that goes from O to one of the k closest and then a single edge from
that node to the k + 1st.

This assumes we treat node O as the 0th-closest node to O. In other
words, to determine the second closest, look at edges going out from O and
the first closest:

• B has distance 4 (2 to get from O to A and 2 to get from A to B)

• C has distance 4 (direct from O)

3

• D has distance 9 (2 to get from O to A and 7 to get from A to D)

and those are all the possibilities. The shortest of these is the second closest.
There is a tie, so we will arbitrarily make B the second closest (distance 4)
and C the third closest (distance 4).

Which node is the fourth closest? The possibilities are:

• E at distance 7 (through B)

• D at distance 8 (through B)

so the fourth closest is E. The fifth closest is either

• D at distance 8 (through B or E), or

• T at distance 14 (through E).

The fifth closest is D. So the sixth closest is T at distance 13 through D.
Working our way backwards gives us that the shortest path from O to T is

O-A-B-D-T (or, alternatively, O-A-B-E-D-T).

In general the algorithm is as follows:

To find the k + 1st closest given the k closest: Call the k clos-
est (including the origin) the “solved” nodes and the others the
unsolved nodes. For each solved node, find the unsolved node
connected to it by the shortest edge. This is a candidate node.
For each candidate, add the distance on the edge to the distance
from the origin to the solved node. The candidate with the short-
est such distance is the k + 1st closest node.

You can find the shortest path from the origin to the destination by repeat-
edly using the above step until the destination becomes a solved node. Ties
may be broken arbitrarily, and may provide information about alternative
shortest paths.

Discussion. It is important to recognize that the shortest path problem
is a model that can be used even if no distances are involved. For instance,
the numbers on the edges might represent costs, so the problem is finding a
sequence of tasks that completes some goal at minimum cost. Or the numbers
might be time, and the problem is minimizing the amount of time required
to accomplish some goal. This is illustrated by the following exercise:

4

Exercise 1 At a small but growing airport, the local airline company is pur-
chasing a new tractor for a tractor-trailer train to bring luggage to and from
the airplanes. A new mechanized luggage system will be installed in 3 years,
so the tractor will not be needed after that. However, because it will receive
heavy use, and maintenance costs are high, it may still be more economical
to replace the tractor after 1 or 2 years. The following table gives the total
net discounted cost associated with purchasing a tractor in year i and trading
it in in year j (where year 0 is now):

j
1 2 3

0 8 18 31
i 1 — 10 21

2 — — 12

The problem is to determine at what times the tractor should be replaced (if
ever) to minimize the total costs for tractors.

(a) Formulate this problem as a shortest path problem.

(b) Use the algorithm presented to solve this problem.

Exercise 2 Solve the shortest path problem for the network in figure 2.

(destination)(origin) 8

6

5

4

7

5

2

1

5

6

4

T

E

D

C

B

A

O 2

Figure 2: Distances

5

4 Minimum Spanning Tree

The minimum spanning tree problem is to choose edges from an undirected
connected network so that every two nodes are connected by a path. The
objective is to choose edges with minimum total distance. It is intuitively
clear that such a set will not contain a cycle. Therefore, the set will be a
tree. This tree will connect (span) all the nodes.

This problem has a number of important practical applications. For ex-
ample, it can sometimes be helpful in planning transportation networks that
will not be used much. There, the primary consideration is to provide some
link between all pairs of nodes in the most economical way. Other examples
include the planning of large-scale communication models and distribution
networks.

The minimum spanning tree problem can be solved in a very straightfor-
ward way because it is one of the few problems where being greedy at each
stage of a solution procedure still results in an optimal solution at the end!
The algorithm is as follows:

Greedy algorithm

1. Initialization The algorithm starts with no edge in the tree.

2. Iterative Step The edges are considered in increasing order of their
length. If an edge does not form a cycle with edges already in the tree,
add it to the tree. Otherwise, discard it.

3. Stopping Criterion: Stop when all nodes are connected.

Proof that the greedy algorithm finds a minimum spanning tree:
Let T ∗ denote the tree found by the greedy algorithm and suppose some other
tree is shorter. We will show that this leads to a contradiction. Among the
trees which are shorter than the greedy solution T ∗, denote by T one which
has the largest number of common edges with T ∗. Let a be a shortest edge in
T ∗ but not in T and let C be the unique cycle formed when edge a is added
to the edges of T . The cycle C contains at least one edge not in T ∗, say b,
since T ∗ contains no cycle. The length of a is less than or equal to that of
b, since edge a must have been considered before b by the greedy algorithm.
Now the tree T ′ obtained from T by adding edge a and removing edge b is of
the same length as or shorter than T . Therefore T ′ is shorter than T ∗. But
it has one more edge in common with T ∗, a contradiction. This completes
the proof.

6

Here’s a different algorithm for finding a minimum spanning tree:

1. Select a node arbitrarily, and connect it to a node closest to it.

2. Identify an unconnected node that is closest to a connected node and
add the edge between them. Repeat until all nodes have been con-
nected.

It may seem that it makes a difference which node to start at. It turns out
it doesn’t (except for possibly finding alternative minimum spanning trees).
We omit the proof that this algorithm also gives an optimum solution to the
minimum spanning tree problem. In the homework and exam, you can use
either of these two algorithms to solve the problem.

Exercise 3 A bank is hooking up computer terminals at each of its branch
offices using special phone lines. The phone line from a branch does not need
to be directly connected to the main office, but there must be a sequence of
phone lines from any office to the main office.

The charge for the special phone lines is directly proportional to the mileage
involved. The distance between the offices are given in the following table.

Main B1 B2 B3 B4 B5

Main Office — 190 70 115 270 160
Branch 1 190 — 100 240 215 50
Branch 2 70 100 — 140 120 220
Branch 3 115 240 140 — 175 80
Branch 4 270 215 120 175 — 310
Branch 5 160 50 220 80 310 —

(a) Explain how this problem fits in with the definition of the minimum
spanning tree problem.

(b) Solve this problem.

5 Maximum Flow

Now we address the final question of the Seervada Park management: how to
route the various tram trips from the entrance to the waterfalls to maximize
the number of trips per day. There are strict upper bounds on the number of

7

outgoing trips per day (we will assume that trams return by the same route,
so we can concentrate only on the outgoing trips) on each arc. The limits are
represented in figure 3. In general, the limit (or capacity) of arc (i, j) will be
denoted by cij.

E

DB

C

O

A

T

7

5

4

4

2

1
1

3

4

5 1
1

9

6

Figure 3: Daily limits

Note that the arcs are directed and it is possible to have oppositely di-
rected arcs between the same nodes. Given the limits, one possible solution
is to send twelve trams per day, with five using the route O-B-E-T, one us-
ing O-C-E-T, one using O-C-E-D-T, three more on O-A-D-T and two on
O-B-D-T. Is there a way to do better?

A very efficient algorithm for this problem is the augmenting path algo-
rithm, due to Ford and Fulkerson. To describe this algorithm, it will be
useful to introduce the following notation. The traffic (or flow) on arc (i, j)
is denoted by fij . For example, in the twelve tram solution described above,
fOA = 3 (3 trams use arc OA), fOB = 5+2 = 7 (7 trams use arc OB, namely
5 from route O-B-E-T and two from O-B-D-T), fOC = 1+1 = 2 and so forth.

An augmenting path is a undirected path from the origin to the desti-
nation such that every arc directed in the forward direction of the path has
positive residual capacity cij − fij and every arc directed in the backward
direction of the path has positive flow fij . Each augmenting path represents
an opportunity to increase the amount of flow sent from the origin to the
destination. Note that such a path may include both arcs that represent in-
creasing flow (the forward arcs) and arcs that represent cancelling flow (the

8

backward arcs). The maximum amount of flow that can be feasibly sent
along the path is determined by the smallest of the residual capacities along
forward arcs and of the flows along backward arcs.

This gives the augmenting path algorithm:

1. Identify an augmenting path from the origin to the destination.

2. Find the maximum amount of flow that can be feasibly sent along this
augmenting path. Let this value be m.

3. Increase the flow on forward arcs of this path by m and reduce the flow
on backward arcs by m.

Note that step 1 is not completely defined. There are many alternatives
for finding an augmenting path. When we solve the example, the paths
will be chosen arbitrarily (and you may also choose them arbitrarily in the
homework and on exams). Note, however, that you must be organized enough
to always find an augmenting path when one exists. So it is in fact a good
idea to apply a labeling procedure (such as Ford and Fulkerson’s method,
described in many textbooks) when you cannot find more augmenting paths
by inspection.

Let’s work through our example: is the twelve tram solution described
above an optimal solution?

By inspection, we discover that the path O-A-B-D-T, which only contains
forward arcs, has positive residual capacity on every arc. Namely, the residual
capacity on arc OA is 2, it is 1 on AB, 2 on BD and 3 on DT . The smallest
of these values is 1. Therefore we have found an augmenting path and we
can obtain a better solution by sending one unit of flow along this path. This
yields a thirteen tram solution. Is it optimal?

Again, by inspection, we discover the following augmenting path: O-C-
E-B-D-T. It contains four forward arcs and one backward arc (BE). The
residual capacities on the forward arcs are 2, 2, 1 and 2 respectively. The
flow on the backward arc is 5. The smallest of these values is 1. Therefore
we can increase our total flow by 1 (to a total of fourteen trams). This is
acheived by increasing the flow on each of the forward arcs by one unit and
decreasing it by one unit on the backward arc. The resulting arc flows are
shown in figure 4.

Note that routes for the trams can easily be constructed from the flow
solution. For example, three trams can use route O-C-E-T, three O-B-E-T,

9

E

DB

C

O

A

T

4

7

3

1
0

3

4

4
0

3

1 0

6

8

Figure 4: Optimal flow

one O-B-E-D-T, three O-B-D-T, three O-A-D-T and one O-A-B-D-T. There
are many other ways of routing the fourteen trams. We are happy with just
one. Can we do better than fourteen trams?

We apply the Ford-Fulkerson labeling procedure. The originO is labeled.
Then A is labeled since there is a positive residual capacity on arc OA.
Similarly, C can be labeled and then E (since OC and CE have positive
residual capacities). Next B can be labeled since BE has positive flow and
E is already labeled. Now all arcs going from a labeled node to an unlabeled
one have zero residual capacity and all arcs going from an unlabeled node
to a labeled one have zero flow. So no further labeling is possible. Since the
destination could not be labeled, there is no augmenting path to be found.
The current solution is optimum.

There is a simple way to see that, when the destination cannot be labeled
by the labeling procedure, we have found an optimum flow: look at the arcs
going out of the labeled nodes, namely O-A-B-C-E. The total capacity of the
arcs leaving this set is 14. Therefore, we know that we cannot send more
than 14 units of flow from O to T . Since we found a way to send 14 units,
we know we have the maximum flow. This is not a coincidence. Call a cut
a set of arcs leaving a node set that contains the origin and doesn’t contain
the destination. Let the capacity of a cut be the sum of the capacities of
arcs in the cut. The max-flow min-cut theorem states that the maximum
feasible flow from the origin to the destination equals the capacity of a cut

10

with minimum capacity. To prove this theorem, we could write the maximum
flow problem as a linear program (we will actually do this in the minimum
cost flow section) and observe that the dual of this linear program is the
minimum cut problem. The max flow- min cut theorem then follows from
the strong duality theorem of linear programming. (The only tricky part
of the proof is to show that the max-flow and the min-cut problems can
indeed be formulated as linear programs instead of integer programs. The
key property here is known as (total) unimodularity. We will not go into it
in this course.

Exercise 4 Consider a network with nodes s, a, b, c, d, t where s is the origin,
t is the destination, and arcs (s, a), (s, b), (s, c), (a, b), (a, d), (b, c), (b, t),
(c, t), (d, b), (d, t). The following table contains arc capacities as well as arc
flows.

Arcs
(s,a) (s,b) (s,c) (a,b) (a,d) (b,c) (b,t) (c,t) (d,b) (d,t)

Capacities 10 4 6 2 6 2 7 4 3 6
Flows 8 4 2 2 6 2 7 4 3 3

(a) Verify that the solution given by the above arc flows is feasible, that is
it satisfies the capacity restrictions and there is conservation of flow at
each node of the network other than the origin and destination. (Con-
servation of flow at node a means that the total flow going into node a
equals the total flow leaving it.)

(b) Is the above solution a maximum flow from s to t ? If not, find an
augmenting path and construct a maximum flow.

(c) Find a cut of minimum capacity.

6 Other Network Models

So far we have considered three network models: shortest path, minimum
spanning tree, and maximum flow, and you have learned some algorithms to
solve these problems. The purpose of learning these algorithms is twofold:
to impress upon you the simplicity of the algorithms, and to allow you to
solve smallish examples quickly and accurately.

11

We will now move on to some more complicated models. These mod-
els can all be solved very effectively by specializing the simplex method for
them. It is important for you to know how to model within the restrictions
required by each model. The models we will look at are the transportation,
assignment, transshipment and minimum cost flow models.

6.1 Transportation Problem

One of the main products of P&T Company is canned peas. The peas are
prepared at three canneries (near Bellingham, Washington; Eugene, Oregon;
and Albert Lea, Minnesota) and are then shipped by truck to four distribut-
ing warehouses in Sacremento, California; Salt Lake City, Utah; Rapid City,
South Dakota; and Albuquerque, New Mexico. Because shipping costs are
a major expense, management has begun a study to reduce them. For the
upcoming season, an estimate has been made of what the output will be
from each cannery, and how much each warehouse will require to satisfy its
customers. The shipping costs from each cannery to each warehouse has also
been determined. This is summarized in the next table.

Shipping cost Warehouse
per truckload 1 2 3 4 Output

1 464 513 654 867 75
Cannery 2 352 416 690 791 125

3 995 682 388 685 100
Requirement 80 65 70 85

You should find it an easy exercise to model this as a linear program. If
we let xij be the number of truckloads shipped from cannery i to warehouse
j, the problem is to

12

minimize 464x11 + 513x12 + 654x13 + 867x14 + 352x21 + . . .+ 685x34

subject to
x11 + x12 + x13 + x14 = 75
x21 + x22 + x23 + x24 = 125
x31 + x32 + x33 + x34 = 100
x11 + x21 + x31 = 80
x12 + x22 + x32 = 65
x13 + x23 + x33 = 70
x14 + x24 + x34 = 85
xij ≥ 0 for all i and j.

This is an example of the transportation model. As has been pointed
out, this problem has a lot of nice structure. All the coefficients are 1 and
every variable appears in exactly two constraints. It is this structure that lets
the simplex algorithm be specialized into an extremely efficient algorithm.

What defines a transportation model? In general, the transportation
model is concerned with distributing (literally or figuratively) a commodity
from a group of supply centers, called sources to a group of receiving centers,
called destinations to minimize total cost.

In general, source i has a supply of si units, and destination j has a
demand for dj units. The cost of distributing items from a source to a desti-
nation is proportional to the number of units. This data can be conveniently
represented in a table like that for the sample problem.

We will generally assume that the total supply equals the total demand.
If this is not true for a particular problem, dummy sources or destinations can
be added to make it true. The text refers to such a problem as a balanced
transportation problem. These dummy centers may have zero distribution
costs, or costs may be assigned to represent unmet supply or demand.

For example, suppose that cannery 3 makes only 75 truckloads. The total
supply is now 25 units too little. A dummy supply node can be added with
supply 25 to balance the problem, and the cost from the dummy to each
warehouse can be added to represent the cost of not meeting the warehouse’s
demand.

The transportation problem has a couple of nice properties:

Feasibility As long as the supply equals demand, there exists a feasible
solution to the problem.

Integrality If the supplies and demands are integer, every basic solution
(including optimal ones) have integer values. Therefore, it is not neces-

13

sary to resort to integer programming to find integer solutions. Linear
programming suffices. Note that this does not mean that each destina-
tion will be supplied by exactly one source.

In the pea shipping example, a basic solution might be to ship 20 truck-
loads from cannery 1 to warehouse 2 and the remaining 55 to warehouse
4, 80 from cannery 2 to warehouse 1 and 45 to warehouse 2 and, finally,
70 truckloads from cannery 3 to warehouse 3 and 30 to warehouse 4. Even
though the linear programming formulation of the pea shipping example has
seven constraints other than nonnegativity, a basic solution has only six basic
variables! This is because the constraints are linearly dependent: the sum of
the first three is identical to the sum of the last four. As a consequence, the
feasible region defined by the constraints would remain the same if we only
kept six of them. In general, a basic solution to the transportation model
will have a number of basic variables equal to the number of sources plus the
number of destinations minus one.

We close this section by showing how the dual problem can be used to
verify whether a solution, such as the one given above, is optimal. In our
example, the dual linear program is

Maximize 75u1 + 125u2 + 100u3 + 80v1 + 65v2 + 70v3 + 85v4

Subject to
u1 + v1 ≤ 464
u1 + v2 ≤ 513
u1 + v3 ≤ 654
u1 + v4 ≤ 867
u2 + v1 ≤ 352
. . .
u3 + v4 ≤ 685
ui, vj unrestricted for all i and j.

The fact that one of the primal constraints is redundant means that one
of the dual variables can be set to zero. For example we can set u1 = 0. Now
we apply the complementary slackness conditions. If the solution x12 = 20,
x14 = 55, x21 = 80, x22 = 45, x33 = 70, x34 = 30 is optimal, then the dual
constraints corresponding to these basic variables must be tight:

14

u1 + v2 = 513
u1 + v4 = 867
u2 + v1 = 352
u2 + v2 = 416
u3 + v3 = 388
u3 + v4 = 685.

Since we can choose u1 = 0, this linear system of equations is very easy
to solve. We get v2 = 513, v4 = 867. This implies u2 = −97 and u3 = −182.
Finally v1 = 449 and v3 = 570. Is this dual solution a feasible dual solution?
We must check the constraints.

u1 + v1 = 0 + 449 ≤ 464
u1 + v3 = 0 + 570 ≤ 654
u2 + v3 = −97 + 570 ≤ 690
u2 + v4 = −97 + 867 ≤ 791
u3 + v1 = −182 + 449 ≤ 95
u3 + v2 = −182 + 513 ≤ 682.

Since we have primal and dual feasible solutions which satisfy the com-
plementary slackness conditions, these solutions are optimal.

Exercise 5 Consider the following transportation problem

Shipping Destination
cost 1 2 3 4 Supply

1 6 0 2 11 15
Source 2 12 7 9 20 30

3 0 4 0 8 5
Demand 10 15 15 10

and the following solution: x12 = 5, x14 = 10, x21 = 5, x22 = 10, x23 =
15, x31 = 5. Use duality to determine whether this is an optimal solution.

6.2 Assignment Problem

A special case of the transportation problem is the assignment problem which
occurs when each supply is 1 and each demand is 1. In this case, the inte-
grality implies that every supplier will be assigned one destination and every
destination will have one supplier. The costs give the charge for assigning a
supplier and destination to each other.

15

Example. A company has three new machines of different types. There
are four different plants that could receive the machines. Each plant can only
receive one machine, and each machine can only be given to one plant. The
expected profit that can be made by each plant if assigned a machine is as
follows:

Plant
1 2 3 4

1 13 16 12 11
Machine 2 15 0 13 20

3 5 7 10 6

This is a transportation problem with all supplies and demands equal to
1, so it is an assignment problem.

Note that a balanced problem must have the same number of supplies
and demands, so we must add a dummy machine (corresponding to receiving
no machine) and assign a zero cost for assigning the dummy machine to a
plant.

Exercise 6 Albert, Bob, Carl, and David are stranded on a desert island
with Elaine, Francine, Gert, and Holly. The “compatibility measures” in the
next table indicate the happiness each couple would experience if they spent
all their time together. If a couple spends only a partial amount of time
together, then the happiness is proportional to the fraction of time spent. So
if Albert and Elaine spend half their time together, they earn happiness of
7/2.

E F G H

A 7 5 8 2
B 7 8 9 4
C 3 5 7 9
D 5 5 6 7

(a) Let xij be the fraction of time that man i spends with woman j. For-
mulate a linear program that maximizes the total happiness of the is-
land (assume that no man spends time with any other man, no woman
spends time with any other woman, and no one spends time alone).

16

(b) Explain why exactly four xij will be 1 and the rest will be 0 in an opti-
mal solution to this linear program. This result is called the Marriage
Theorem for obvious reasons.

(c) Do you think that this theorem will hold if we allow men to spend time
with men and women to spend time with women?

6.3 The Transshipment Problem

One requirement of the transportation problem is advance knowledge of the
method of distributing flow from each source to each destination. This de-
termines the cost. Sometimes, however, the best method of routing the flow
is not clear because of the possibility of transshipments.

Continuing our pea shipping example, suppose our company decided to
look at using common carriers to ship our goods (common carriers are truck-
ing companies for hire, as opposed to internal trucking divisions). Since no
single trucking company serves all of our area, many shipments will need to
be transfered to another truck at least once along the way. These transfers
can be made at an intermediate cannery or warehouse, or be made at one
of three other junctions. These are at Butte, Montana; Boise, Idaho; and
Cheyenne, Wyoming. The shipping cost per truck is given in the following
table:

Cannery Junction Warehouse Out-
1 2 3 1 2 3 1 2 3 4 put

1 146 — 324 286 — 452 505 — 871 75
Cannery 2 146 — 373 212 570 335 407 688 784 125

3 — — 658 — 405 — 685 359 673 100
1 322 371 656 262 398 503 234 329 —

Junction 2 284 210 — 262 406 305 207 464 558
3 — 569 403 398 406 597 253 171 282
1 453 336 — 505 307 599 359 706 587

Ware- 2 505 407 683 235 208 254 357 362 341
house 3 — 687 357 329 464 171 705 362 457

4 868 781 670 — 558 282 587 340 457
Demand 80 65 70 85

17

So, for instance, peas can go from cannery 1 to warehouse 4 directly at
cost 871. They can also go from cannery 1, to junction 2, to warehouse 2,
and then to warehouse 4 at cost of 286 + 207 + 341 = 834.

The overall problem is to determine how the output from each cannery
should be shipped to the warehouses to meet demand and minimize shipping
costs.

Note that the above table does not represent a transportation problem.
It is a transshipment problem. We can, however, represent any transshipment
problem as an equivalent transportation problem.

The fundamental idea is to interpret the individual truck trips as being
the shipment from a source to a destination. Therefore, there is both a
source and a destination for all of the places in our problem. There is a
source node for cannery 1 (representing everything leaving cannery 1) and a
destination node (representing everything entering the node). This gives rise
to the following cost table (ignore supplies and demands for now):

Cannery Junction Warehouse Out-
1 2 3 1 2 3 1 2 3 4 put

1 0 146 M 324 286 M 452 505 M 871 375
Cannery 2 146 0 M 373 212 570 335 407 688 784 425

3 M M 0 658 M 405 M 685 359 673 400
1 322 371 656 0 262 398 503 234 329 M 300

Junction 2 284 210 M 262 0 406 305 207 464 558 300
3 M 569 403 398 406 0 597 253 171 282 300
1 453 336 M 505 307 599 0 359 706 587 300

Ware- 2 505 407 683 235 208 254 357 0 362 341 300
house 3 M 687 357 329 464 171 705 362 0 457 300

4 868 781 670 M 558 282 587 340 457 0 300
Demand 300 300 300 300 300 300 380 365 370 385

Impossible shipments are represented by a large cost M . Shipments from
a place to itself are assigned cost 0.

The final step is to give every source node a supply and every destination
node a demand. Now suppose we knew how much would be shipped through
a place. If that amount was 50, then we would increase the supply for the
source version of that place by 50 and we would increase the demand for the
destination version of that place by 50. This would ensure that 50 units were
shipped through that place.

18

We do not know the amount shipped through each node, but we can place
an upper bound on the amount. Since it would not pay to ship something
through a place twice, a safe upper bound on the amount shipped through
the place is the total supply (300 in this case). This value is added to the
supply or demand of each node. So if 50 flow is sent through junction 3,
then 250 is sent from the source of junction 3 to the destination of junction
3 (at zero cost). In order to meet supply and demand, 50 units of flow must
be sent to the demand node of junction 3, and 50 units of flow are available
at the source node and must be sent somewhere else. But the flow through
junction 3 can be any value from 0 to 300.

By solving this transportation problem, we get the following optimal so-
lution:

300 units from cannery 1 to cannery 1
75 from cannery 1 to junction 2
300 from cannery 2 to cannery 2
80 from cannery 2 to warehouse 1
45 from cannery 2 to warehouse 2
300 from cannery 3 to cannery 3
70 from cannery 3 to warehouse 3
30 from cannery 3 to warehouse 4
300 from junction 1 to junction 1
225 from junction 2 to junction 2
75 from junction 2 to warehouse 2
300 from junction 3 to junction 3
300 from warehouse 1 to warehouse 1
245 from warehouse 2 to warehouse 2
55 from warehouse 2 to warehouse 4
300 from warehouse 3 to warehouse 3
300 from warehouse 4 to warehouse 4.

Removing the shipments that remain in place leaves:

75 from cannery 1 to junction 2
80 from cannery 2 to warehouse 1
45 from cannery 2 to warehouse 2
70 from cannery 3 to warehouse 3
30 from cannery 3 to warehouse 4
75 from junction 2 to warehouse 2
55 from warehouse 2 to warehouse 4

19

so only junction 2 and warehouse 3 are used to transfer goods.
General structure. The transshipment problem is concerned with how

to allocate and route flow (peas in our example) from supply centers to des-
tinations via intermediate points. In addition to transshiping flow, supply
centers generate a surplus that must be distributed and each destination gen-
erates a given deficit. Intermediate points (or transshipment nodes) neither
generate nor absorb flow. The total supply must equal the total demand,
so dummy nodes should be added appropriately. No connection may have a
capacity, and all costs should be nonnegative. This defines a transshipment
problem.

Transshipment problems can be solved via a transformation to the trans-
portation problem.

Supplementary Exercise 1 A company must meet the following demands
for cash at the beginning of each of the next six months:

Month 1 2 3 4 5 6

Needs $200 $100 $50 $80 $160 $140

At the beginning of month 1, the company has $150 in cash and $200
worth of bond 1, $100 worth of bond 2 and $400 worth of bond 3. Of course,
the company will have to sell some bonds to meet demands, but a penalty will
be charged for any bonds sold before the end of month 6. The penalties for
selling $1 worth of each bond are shown in the table below.

Month of sale
1 2 3 4 5 6

1 $0.07 $0.06 $0.06 $0.04 $0.03 $0.03
Bond 2 $0.17 $0.17 $0.17 $0.11 $0 $0

3 $0.33 $0.33 $0.33 $0.33 $0.33 $0

(a) Assuming that all bills must be paid on time, formulate a balanced trans-
portation problem that can be used to minimize the cost of meeting the
cash demands for the next six months.

(b) Assume that payment of bills can be made after they are due, but a
penalty of $0.02 per month is assessed for each dollar of cash demands
that is postponed for one month. Assuming all bills must be paid by
the end of month 6, develop a transshipment model that can be used to
minimize the cost of paying the next six months’ bills.

20

[Hint: Transshipment points are needed, in the form Ct = cash avail-
able at beginning of month t after bonds for month t have been sold,
but before month t demand is met. Shipments into Ct occur from bond
sales and Ct−1. Shipments out of Ct occur to Ct+1 and demands for
months 1, 2, . . . , t.]

6.4 Minimum Cost Flow

This is the most general model we will look at. Like the maximum flow
problem, it considers flows in networks with capacities. Like the shortest path
problem, it considers a cost for flow through an arc. Like the transportation
problem, it allows multiple sources and destinations. Like the transshipment
problem, it allows nodes between sources and destinations. In fact, all of
these problems (all the models you have seen except minimum spanning
tree) can be seen as special cases of the minimum cost flow problem.

Consider a directed network with n nodes. The decision variables are xij ,
the flow through arc (i, j). The given information includes:

• cij: cost per unit of flow from i to j (may be negative),

• uij: capacity (or upper bound) on flow from i to j,

• bi: net flow generated at i.

This last value has a sign convention:

• bi > 0 if i is a supply node,

• bi < 0 if i is a demand node,

• bi = 0 if i is a transshipment node.

The objective is to minimize the total cost of sending the supply through the
network to satisfy the demand.

Note that for this model, it is not necessary that every arc exists. We
will use the convention that summations are only taken over arcs that exist.
The linear programming formulation for this problem is:

Minimize
∑

i

∑
j cijxij

Subject to
∑

j xij −
∑

j xji = bi for all nodes i,

0 ≤ xij ≤ uij for all arcs (i, j).

21

Again, we will assume that the network is balanced, so
∑

i bi = 0, since
dummies can be added as needed. We also still have a nice integrality prop-
erty. If all the bi and uij are integral, then the resulting solution to the linear
program is also integral.

Minimum cost network flows are solved by a variation of the simplex
algorithm and can be solved more than 100 times faster than equivalently
sized linear programs. From a modeling point of view, it is most important to
know the sort of things that can and cannot be modeled in a single network
flow problem:

Can do

1. Lower bounds on arcs. If a variable xij has a lower bound of lij ,
upper bound of uij, and cost of cij , change the problem as follows:

• Replace the upper bound with uij − lij ,

• Replace the supply at i with bi − lij ,

• Replace the supply at j with bi + lij ,

Now you have a minimum cost flow problem. Add cijlij to the
objective after solving and lij to the flow on arc (i, j) to obtain a
solution of the original problem.

2. Upper bounds on flow through a node. Replace the node i with
nodes i′ and i′′. Create an arc from i′ to i′′ with the appropriate
capacity, and cost 0. Replace every arc (j, i) with one from j to i′

and every arc (i, j) with one from i′′ to j. Lower bounds can also
be handled this way.

3. Convex, piecewise linear costs on arc flows (for minimization).
This is handled by introducing multiple arcs between the nodes,
one for each portion of the piecewise linear function. The con-
vexity will assure that costs are handled correctly in an optimal
solution.

Can’t do

1. Fixed cost to use a node.

2. Fixed cost to use an arc.

3. “Proportionality of flow.” That is, if one unit enters node i, then
you insist that .5 units go to node j and .5 to node k.

22

4. Gains and losses of flow along arcs, as in power distribution.

Note that although these cannot be done in a single network, it may
be possible to use the solutions to multiple networks to give you an
answer. For instance, if there is only one arc with a fixed cost, you can
solve both with and without the arc to see if it is advantageous to pay
the fixed cost.

7 PERT/CPM

The final network models we discuss are the PERT and CPM models for
project scheduling. The successful management of large projects, be they
construction, transportation, financial, or what-have-you, relies on careful
scheduling and coordinating of various tasks. CPM (Critical Path Method)
and PERT (Project Evaluation and Review Technique) attempt to analyze
project scheduling. This allows for better control and evaluation of the
project. For instance, CPM allows you to answer such questions as:

• How long will the project take?

• When will we be able to start a particular task?

• If this task is not completed on time, will the entire project be delayed?

• Which tasks should we speed up (crash) in order to finish the project
earlier?

CPM and PERT have been used in a wide variety of projects, from design-
ing and producing computers to scheduling a complex surgery. The essential
ideas behind these techniques are quite straightforward (not as complicated
as maximum flow for instance). We will begin with CPM.

CPM uses a project network to portray graphically the relationships
among the tasks in a project. This is illustrated in the following diagram for
building a house. Here excavation must be done before foundation and the
foundation done before the rough wall. After that, three tasks may be done
(rough electrical, rough exterior plumbing, and roof).

Each arc of the project represents a task, or activity. This is the activity
on arc (AOA) representation. Each node represents an event (like finishing
foundation is node 3). The direction of the arcs gives the sequences in which

23

Interior
Exterior

(6)

Fixtures

Interior Paint (5)

Dummy (0)

(4)

Flooring

Wall Board (8)

Fixtures (2)

Exterior Paint (9)

Exterior Siding (7)
Dummy (0)

(5)

Rough Int. Plumb

(7)

Elect.

Rough

(4)
Rough Ext. Plumb

(Roof (6)

Rough Wall (10)

Foundation (4)

Excavate (2)

FINISH

START

6

8

10

13

12
11

9

7

5

4

3

2

1

24

activities must be achieved. An event must precede the beginning of succes-
sive activities, and an event occurs only when all the activities immediately
preceding it occur.

There are two special nodes, the start node and the finish node. The
start node has no activities enter it; the finish node has no activity leave it.

Each arc has two roles: it represents an activity and it defines the prece-
dence relationships among the activities. Sometimes it is necessary to add
arcs that only represent precedence relationships. These dummy arcs are
represented by dashed arrows. In our example, the arc from 5 to 8 represents
the fact that exterior plumbing must be completed in order to begin exterior
painting.

There are generally rules restricting the form of a project network. Some
of these are:

• An activity is represented by no more than one arc,

• Two nodes can be connected by no more than one arc,

• The project network can have no directed cycles.

To satisfy the second requirement, dummy nodes can be added (like node
11). Because of the third requirement, we can number the nodes so that if
one node precedes another then the first gets a lower number than the second
(as in our example).

Once we have the form of a project network, we can estimate the time
required by each activity. Dummy activities get time 0. This number is in
parentheses on the preceding diagram. These times are used to calculate two
basic quantities: the early time and the late time.

The early time is the earliest time for an event assuming each activity
is started as soon as possible. This is obtained by making a forward pass
through the network. The start of the project is set to have early time 0.
Every following event gets an early time based on the latest time a preceding
event finishes. This is illustrated in table 3.1.

The late time for an event is the latest time an event can occur without
delaying the completion of the project beyond its early time. In this project,
it takes 44 days to build a house. What is the latest the roofing can finish (or
equivalently the latest exterior siding can start) without delaying the entire
project?

The late time is calculated in a manner analogous to the early time. This
time, begin at the end and work backwards. Here is the result for this project.

25

Event Preceding Early Time + Early
Event Activity Time Time

1 — — 0
2 1 0+2 2
3 2 2+4 6
4 3 6+10 16
5 4 16+4 20
6 4 16+6 22
7 4 16+7

5 20+5 25
8 5 20+0

6 22+7 29
9 7 25+8 33
10 8 29+9 38
11 9 33+4 37
12 9 33+5 38

11 37+0
13 10 38+2

12 38+6 44

Table 1: Calculation of Early Time

26

Event Following Late Time - Late
Event Activity Time Time

13 — — 44
12 13 44–6 38
11 12 38–0 38
10 13 44–2 42
9 12 38–5 33

11 38–4
8 10 42–9 33
7 9 33–8 25
6 8 33–7 26
5 8 33–0

7 25–5 20
4 7 25–7

6 26–6
5 20–4 16

3 4 16–10 6
2 3 6–4 2
1 2 2–2 0

Table 2: Calculation of Late Time

27

Therefore, roofing must be done by time 26 or the completion of the
building will be delayed. Note that it can finish as early as 22 days and as
late as 26 days without affecting the completion time. Associated with each
activity is a value called the total float for the activity. The total float
for an activity is the amount of time an activity can be delayed beyond its
earliest time without affecting the final completion time of the project. The
total float for an arc from i to j is the difference between the late time of job
j and (the early time for job i plus the activity time).

An alternative measure for the flexibility of an activity is the free float.
This is the amount of time an activity can be delayed without pushing any
job past its early time. This is calculated as the difference between the early
time of job j and (the early time of job i plus the activity time). The following
table illustrates this concept.

Activity Total Float Free Float

(1,2) 2–(0+2) = 0 2–(0+2) = 0
(2,3) 6–(2+4) = 0 6–(2+4) = 0
(3,4) 16–(6+10) = 0 16–(6+10 = 0
(4,5) 20–(16+4) = 0 20–(16+4) = 0
(4,6) 26–(16+6) = 4 22–(16+6) = 0
(4,7) 25–(16+7) = 2 25–(16+7) = 2
(5,7) 25–(20+5) = 0 25–(20+5) = 0
(6,8) 33–(22+7) = 4 29–(22+7) = 0
(7,9) 33–(25+8) = 0 33–(25+8) = 0
(8,10) 42–(29+9) = 4 38–(29+9) = 0
(9,11) 38–(33+4) = 1 37–(33+4) = 0
(9,12) 38–(33+5) = 0 38–(33+5) = 0
(10,13) 44–(38+2) = 4 44–(38+2) = 4
(12,13) 44–(38+6) = 0 44–(38+6) = 0

Table 3: Calculation of Float

If an activity with a total float of 0 is delayed for whatever reason, then
the entire project is delayed. Such an activity is called a critical activity.
Any path (there may be more than one) from the start node to the finish
node made up solely of critical activities is a critical path. In our example,
a critical path is 1-2-3-4-5-7-9-12-13.

28

This information on early and late times, critical jobs, and critical paths
in invaluable to a manager, for it allows her to investigate the effect of possible
improvements to the project plan.

Using Linear Programming
It is possible to use linear programming to find a critical path and to

determine the overall completion time. Although this approach is much
slower than the above algorithm, we will be able to extend the model to
identify activities that should be “crashed” (speeded up, perhaps at some
cost).

To do this, let xj be the time that event j occurs. The objective, for this
example is to minimize x13 − x1. Each activity corresponds to a constraint.
For instance, the activity between 1 and 2 is the constraint

x2 ≥ x1 + 2.

The other constraints are

x3 ≥ x2 + 4
x4 ≥ x3 + 10
x5 ≥ x4 + 4
x6 ≥ x4 + 6
x7 ≥ x4 + 7
x7 ≥ x5 + 5
x8 ≥ x5 + 0
x8 ≥ x6 + 7
x9 ≥ x7 + 8
x10 ≥ x8 + 9
x11 ≥ x9 + 4
x12 ≥ x9 + 5
x12 ≥ x11

x13 ≥ x10 + 2
x13 ≥ x12 + 6

If x1 is set to 0, optimizing this linear program will give the optimal
completion time. Furthermore, one critical path will be identified. The arcs
on this path will correspond to constraint with a shadow price of -1.

Crashing the Project It is easy then to use the above linear programming
formulation to determine which projects to decrease the time for. Suppose we

29

need to complete the house in 40 days, and we can decrease the excavation
by at most 1 day at cost $500/day, foundation by at most 2 days at cost
$600 per day, rough walling by at most 2 days at cost $400 per day, and
exterior siding by at most 4 days at cost $300 per day decreased. How can
we minimize cost so that the house is finished in 40 days?

If we let new variables z1, z2, z3, and z4 represent the number of days
we decrease the time needed for excavation, foundation, walling, and siding,
respectively, then we get the L.P.:

Minimize 500z1 + 600z2 + 400z3 + 300z4

subject to x2 ≥ x1 + 2− z1

x3 ≥ x2 + 4− z2

x4 ≥ x3 + 10− z3

x5 ≥ x4 + 4
x6 ≥ x4 + 6
x7 ≥ x4 + 7
x7 ≥ x5 + 5
x8 ≥ x5 + 0
x8 ≥ x6 + 7− z4

x9 ≥ x7 + 8
x10 ≥ x8 + 9
x11 ≥ x9 + 4
x12 ≥ x9 + 5
x12 ≥ x11

x13 ≥ x10 + 2
x13 ≥ x12 + 6
x1 = 0
x13 − x1 ≤ 40
z1 ≤ 1
z2 ≤ 2
z3 ≤ 2
z4 ≤ 4

PERT
So far we have assumed that reasonably accurate estimates can be made

of the time required for each activity in the project network. In reality, ther
is frequently some uncertainty about the time an activity can take.

In a PERT network, this uncertainty is summed up in three numbers
about each activity: the most likely value for the duration (m), a pessimistic

30

value (b) and an optimistic value (a). PERT then fits a particular type of
probability distribution to these values. This distribution (the beta distribu-
tion) assumes that the range from a and b encompasses 6 standard deviations
(3 on either side of the mean). The mean itself is calculated as

Mean =
a+ 4m+ b

6

and the variance:

Variance =
(b− a)2

36
.

Based on these values, PERT will use an activity network to calculate a
mean finishing time along with a variance about that finishing time. There
are two critical assumptions: the times for the activities are independent of
each other, and the critical path identified is always the longest path in the
network, no matter how the activity lengths turn out.

With these assumptions, you can solve a PERT network as follows. Find
a critical path using the CPM method with the mean activity times on the
arcs. This gives the mean finishing time. The variance of the finishing time
is simply the sum of the variances of the activities on the critical path. The
overall finishing value is assumed to be normally distributed, so quantiles are
based on the normal distribution.

PERT allows you to answer such questions as:

• What is the probability the total time is less than 40 days?

• What is the probability the total time is more than 50 days?

• How much should the project budget be increased in order to ensure
with 99% probability that the project will finish by December 10?

Unfortunately, the assumptions behind PERT are very stringent. Be
careful when using any canned package for it hides the assumptions very
well. Used correctly, both PERT and CPM greatly aid in the control and
analysis of large projects.

Exercise 7 Consider the following project.

31

Activity Duration Predecessors

A 6 —
B 3 —
C 5 —
D 4 A
E 5 A
F 7 B
G 4 C
H 6 C
I 3 D
J 4 F,G
K 3 F,G
L 2 H
M 6 E,I,J
N 5 K,L

Find the early time and late time for each event as well as the total float
for each activity. Also identify the critical path.

32

