MthSc 813 Advanced Linear Programming Spring 1999 Midterm Exam

March 5, 1999

- This take-home exam is due by 3:00 on Tuesday, March 9, 1999. Sign and return this cover sheet with your exam.
- There are a total of 60 points. Point value is listed next to each question.
- You may consult your textbook, class notes, and me. No other sources are allowed.
- Mark your answers clearly. Show your work. Unsupported correct answers receive partial credit.
- Be sure to write your name on each page.
- Good luck!

Name: \qquad

Student ID \#:

I certify that I have not received any unauthorized assistance in completing this examination.

Signature:

Date: \qquad

The first rule of discovery is to have brains and good luck. The second rule of discovery is to sit tight and wait till you get a bright idea.
-G. Polya

1. (10 points) A supporting hyperplane for a convex polyhedron $P=\{x: A x \leq b\}$ is a hyperplane $H=\left\{x: a^{T} x=a_{0}\right\}$ such that for all $x \in P, a^{T} x \leq a_{0}$ and for some $x \in P, a^{T} x=a_{0}$. A face of P is the set $F=P \cap H$ for some supporting hyperplane H.
(a) Show that H is a supporting hyperplane for P if and only if a_{0} is the optimal objective value for the $\mathrm{LP} \max \left\{a^{T} x: A x \leq b\right\}$.

If Let x^{*} be an optimal solution to the LP, with $a^{T} x^{*}=a_{0}$. Then clearly $x^{*} \in H$ and for all $x \in P, a^{T} x \leq a_{0}$.
Only if Suppose $H=\left\{x: a^{T} x=a_{0}\right\}$ is a supporting hyperplane for P. Then there exists an $x^{*} \in P$ such that $a^{T} x^{*}=a_{0}$. If x^{*} is not an optimal solution to the LP, then there exists \hat{x} such that $a^{T} \hat{x}>a_{0}$, contradicting the assumption that H is a supporting hyperplane.
(b) Show that F is a face of P if and only if $F=\left\{x \in P: A^{\prime} x=b^{\prime}\right\}$, for some subsystem $A^{\prime} x \leq b^{\prime}$ of $A x \leq b$.

If Let $F=\left\{x \in P: A^{\prime} x=b^{\prime}\right\}$ for some subsystem $A^{\prime} x \leq b^{\prime}$ of $A x \leq b$ (and assume $F \neq \emptyset$). Define $a^{T}=e^{T} A^{\prime}, a_{0}=e^{T} b^{\prime}$, and let $H=\{x$: $\left.a^{T} x=a_{0}\right\}$. Then every $x \in F$ satisfies $a^{T} x=a_{0}$ and every $x \in P$ satisfies $a^{T} x=e^{T} A^{\prime} x \leq e^{T} b^{\prime}=a_{0}$.
Only if Let $F=P \cap H$, where $H=\left\{x: a^{T} x=a_{0}\right\}$ is a supporting hyperplane, and consider the LP $\max \left\{a^{T} x: A x \leq b\right\}$ and its dual $\min \left\{b^{T} y: A^{T} y=a, y \geq 0\right\}$. Let x^{*} and y^{*} be strictly complementary solutions (which exist if H is a supporting hyperplane). Then by complementary slackness, $A_{i} \cdot x^{*}=b_{i}$ whenever $y_{i}^{*}>0$, for any optimal x^{*}, i.e., for any $x^{*} \in F$. Note that there exists a $y_{i}^{*}>0$ since $a \neq 0$.
2. (10 points) Given a point \hat{x} and a polyhedron $P=\{x: A x \leq b\}$, the separation problem is to determine if $\hat{x} \in P$, and if not, to identify a halfspace $H=\left\{x: a^{T} x \geq a_{0}\right\}$ such that $P \subseteq H$ and $\hat{x} \notin H$. Show that the separation problem is polynomially reducible to the problem of solving linear programs. (Hint: Construct a linear program that has an optimal solution if and only if $A \hat{x} \leq b$. If this system has no solution, construct a linear program whose solution provides a separating hyperplane for $\{\hat{x}\}$ and P.)
(a) $\hat{x} \in P$ iff $A \hat{x} \leq b$ iff $\min \left\{0^{T} w: w=b-A \hat{x}, w \geq 0\right\}$ has a feasible solution. (This is a roundabout way to solve a trivial problem, but it's what you have to do if you only have an LP solver.)
(b) If $\hat{x} \notin P$ then the system $x=\hat{x}, A x \leq b$ has no solution. Following the construction in Theorem 10.4, the system

$$
\begin{aligned}
{\left[\begin{array}{ll}
I & A^{T}
\end{array}\right]\left[\begin{array}{l}
y^{1} \\
y^{2}
\end{array}\right] } & =0 \\
y^{2} & \geq 0 \\
\hat{x}^{T} y^{1}+b^{T} y^{2} & <0
\end{aligned}
$$

has a solution. This solution can be found by solving the $\mathrm{LP} \min \left\{\hat{x}^{T} y^{1}+\right.$ $\left.b^{T} y^{2}: y^{1}+A^{T} y^{2}=0, y^{2} \geq 0\right\}$. The solver will terminate with a direction of unboundedness that can be taken as the solution $\left[\begin{array}{ll}\hat{y}^{1} & \hat{y}^{2}\end{array}\right]$ to the system. (Or you can set bounds on the magnitudes of the components of y^{1} and y^{2} to guarnateee an optimal solution $\left[\begin{array}{cc}\hat{y}^{1} & \hat{y}^{2}\end{array}\right]$.) Then $H=$ $\left\{x: x^{T} \hat{y}^{1} \geq-b^{T} \hat{y}^{2}\right\}$ is a halfspace containing P but not \hat{x}.
We can thus solve the separation problem by solving two LPs whose sizes are obviously polynomial in the size of \hat{x}, A and b.
3. (10 points) Let A be an $m \times n$ matrix, and suppose $A x \leq b$ is infeasible. Show that there is an infeasible subsystem $A^{\prime} x \leq b^{\prime}$ consisting of at most $n+1$ inequalities. (Hint: Construct an appropriate theorem of alternative.)

The alternative theorem is just Farkas's Lemma (as given by Vanderbei): $A x \leq b$ is infeasible iff $A^{T} y=0, y \geq 0, b^{T} y<0$ is feasible. After eliminating dependent rows, the equality system $A^{\prime T} y=0$ has at most n rows. Thus the $\mathrm{LP} \min \left\{0^{T} y: A^{\prime T} y=0, b^{T} y=-1, y \geq 0\right\}$ has a feasible solution (found by scaling the components of any solution to the alternative system). By a version of Theorem 3.4 proved in class, this LP has a BFS with at most $n+1$ positive variables. Let $A^{\prime \prime} x=b^{\prime \prime}$ be the subsystem of the original inequality system corresponding to the strictly positive components of the BFS found above. By Farkas's lemma again, this system is infeasible.
4. (10 points) For $t \in \mathbb{R}$, let $\zeta^{*}(t)=\min \left\{c^{T} x: A x=b+t b^{\prime}, x \geq 0\right\}$, and suppose that $\zeta^{*}(0)$ is finite. Determine if $\zeta^{*}(t)$ is convex, concave, both, or neither. Justify your answer.

Let t_{1} and t_{2} be such that the LP is feasible for right-hand sides $b+t_{1} b^{\prime}$ and $b+t_{2} b^{\prime}$. Then $\zeta^{*}(t)$ is convex iff $\alpha \zeta^{*}\left(t_{1}\right)+(1-\alpha) \zeta^{*}\left(t_{2}\right) \geq \zeta^{*}\left(\alpha t_{1}+(1-\alpha) t_{2}\right)$ for $0<\alpha<1$.

Let \hat{x}^{1} be an optimal solution for the LP with RHS $b+t_{1} b^{\prime}$ and \hat{x}^{2} be an optimal solution for RHS $b+t_{2} b^{\prime}$. Let $\hat{x}=\alpha \hat{x}^{1}+(1-\alpha) \hat{x}^{2}$. It is easy to show that \hat{x} is feasible for the LP with RHS $b+\left(\alpha t_{1}+(1-\alpha) t_{2}\right) b^{\prime}$, and $\alpha c^{T} \hat{x}^{1}+(1-\alpha) c^{T} \hat{x}^{2}=c^{T} \hat{x} \geq \zeta^{*}\left(\alpha t_{1}+(1-\alpha) t_{2}\right)$.
5. (10 points) For an LP in bounded-variable form, let the vector of upper bounds be defined by $u+t e^{\hat{\jmath}}$ for some fixed $\hat{\jmath}$. Describe a simplex-based algorithm that will compute $\zeta^{*}(t)$ for all values of $t, l_{\hat{\jmath}}-u_{\hat{\jmath}} \leq t \leq \infty$.

The equations for a bounded-variable BFS are

$$
\begin{aligned}
\zeta & =c_{B}^{T} B^{-1} b+\left(c_{L}^{T}-c_{B}^{T} B^{-1} L\right) x_{L}+\left(c_{U}^{T}-c_{B}^{T} B^{-1} U\right) x_{U} \\
x_{B} & =B^{-1} b-B^{-1} L x_{L}-B^{-1} U x_{U} \\
x_{L} & =l_{L} \\
x_{U} & =u_{U} .
\end{aligned}
$$

Suppose that the simplex method terminates with a finite optimal solution for $t=l_{\hat{\jmath}}-u_{\hat{\jmath}}$ (i.e., $u_{\hat{\jmath}}=l_{\hat{\jmath}}$) with optimal solution x^{*}. (If the solution is unbounded for this condition, it is unbounded for all $t>0$. If it is infeasible, an auxiliary LP can be constructed to identify the smallest value of t for which the LP is feasible. This construction is left as an exercise for the reader.). Otherwise, note that $c_{\hat{\jmath}}-c_{B}^{T} B^{-1} A_{\cdot \hat{\jmath}}<0$ and is unaffected by changes in $u_{\hat{j}}$. Then
(a) Let $t_{0}=0, x_{0}=x^{*}$.
(b) If $\hat{\jmath} \in \mathcal{B}$ or $\hat{\jmath} \in \mathcal{L}$, then $\operatorname{stop}\left(x_{0}\right.$ is optimal for all $t>t_{0}$).
(c) Consider increasing $x_{\hat{\jmath}}=u_{\hat{\jmath}}$. We have $x_{B}=B^{-1} b-B^{-1} A_{\cdot \hat{\jmath}} x_{\hat{\jmath}}$. Perform a bounded-variable ratio test on x_{B}. If no variable leaves, then STOP (the current basis is optimal for all values of $t>t_{0}$). Otherwise, suppose $x_{i^{*}}$ leaves and α^{*} is the minimum ratio.
(d) Perform a dual ratio test with $x_{i^{*}}$ leaving at its bound. Let $x_{j^{*}}$ be the entering variable. If $j^{*}=\hat{\jmath}$ then STOP (the current solution is optimal for all $\left.t>t_{0}+\alpha^{*}\right)$. Otherwise, set $t_{0}:=t_{0}+\alpha^{*}, x_{\hat{\jmath}}^{0}:=u_{\hat{\jmath}}:=u_{\hat{\jmath}}+\alpha^{*}$, and GOTO 5 b.
6. (10 points) Consider a primal-dual pair of LPs in symmetric form, and let x^{*} and y^{*} be strictly complementary primal and dual solutions. Prove: every optimal x has $x_{j}=0$ whenever $x_{j}^{*}=0$ and every optimal y has $y_{i}=0$ whenever $y_{i}^{*}=0$.

By complementary slackness, every optimal x is complementary to every optimal y. In particular, every optimal x is complementary to y^{*}, so has $x_{j}=0$ whenever the dual slack $z_{j}^{*}>0$, i.e., whenever $x_{j}^{*}=0$. A similar argument holds for the dual.

