MthSc 119, Some extra practice problems

19.8 (a) The next three terms are $a_4 = 31$, $a_5 = 63$ and $a_6 = 127$.

We will use induction to prove that $a_n = 2^{n+1} - 1$ for all $n \in \mathbb{N}$.

Basis step: When n = 0, $a_0 = 1$ and $2^{0+1} - 1 = 2 - 1 = 1$, as required.

Induction hypothesis: Suppose $a_k = 2^{k+1} - 1$. We need to prove that $a_{k+1} = 2^{(k+1)+1} - 1 = 2^{k+2} - 1$. Observe that

$$a_{k+1} = 2a_k + 1$$
, by definition
= $2(2^{k+1} - 1) + 1$, by the induction hypothesis
= $2^{k+2} - 2 + 1$
= $2^{k+2} - 1$

as required. Therefore by the **principle of mathematical induction**, the equality holds for all $n \in \mathbb{N}$. QED

(c)
$$c_0 = 3$$
, $c_1 = 4$, $c_2 = 6$, $c_3 = 9$, $c_4 = 13$ and $c_5 = 18$.

We will use induction to prove that $c_n = \frac{n^2 + n + 6}{2}$ for all $n \in \mathbb{N}$. **Basis step:** When n = 0, $c_0 = 3$ and $\frac{0^2 + 0 + 6}{2} = \frac{6}{2} = 3$, as required. **Induction hypothesis:** Suppose that $c_k = \frac{k^2 + k + 6}{2}$. We need to show that $c_{k+1} = \frac{(k+1)^2 + (k+1) + 6}{2} = \frac{k^2 + 3k + 8}{2}$. Observe that

$$c_{k+1} = c_k + (k+1)$$
, by definition

$$= \frac{k^2 + k + 6}{2} + (k+1)$$
, by induction hypothesis

$$= \frac{k^2 + k + 6}{2} + \frac{2(k+1)}{2}$$

$$= \frac{k^2 + k + 6 + 2k + 2}{2}$$

$$= \frac{k^2 + 3k + 8}{2}$$

as required. Therefore by the **principle of mathematical induction**, the statement holds for all $n \in \mathbb{N}$. QED

(d) In order for the recursive definition $d_n = 5d_{n-1} - 6d_{n-2}$ to work when n=2, we need to define both d_0 and d_1 .

$$d_0 = 2$$
, $d_1 = 5$, $d_2 = 13$, $d_3 = 35$, $d_4 = 97$ and $d_5 = 275$.

We will use strong induction to show that $d_n = 2^n + 3^n$ for all $n \in \mathbb{N}$.

Basis cases: When n = 0, $d_0 = 2$ and $2^0 + 3^0 = 1 + 1 = 2$ as required. When n = 1, $d_1 = 5$ and $2^1 + 3^1 = 2 + 3 = 5$ as required.

Strong induction hypothesis: Suppose the formula $d_n = 2^n + 3^n$ holds for all values of n from 0 to k. We need to prove that $d_{k+1} = 2^{k+1} + 3^{k+1}$. Observe that

$$d_{k+1} = 5d_k - 6d_{k-1}$$
, by definition
= $5[2^k + 3^k] - 6[2^{k-1} + 3^{k-1}]$, by induction hypothesis
= $(5-3)2^k + (5-2)3^k$
= $2^{k+1} + 3^{k+1}$

as required. Therefore by the **principle of mathematical induction**, **strong version**, the statement holds for all $n \in \mathbb{N}$. QED

(e)
$$e_0 = 1$$
, $e_1 = 4$, $e_2 = 12$, $e_3 = 32$, $e_4 = 80$ and $e_5 = 192$.

We will use strong induction to show that $e_n = (n+1)2^n$ for all $n \in \mathbb{N}$.

Basis cases: When n = 0, $e_0 = 1$ and $(0 + 1)2^0 = 1 \times 1 = 1$, as required. When n = 1, $e_1 = 4$ and $(1 + 1)2^1 = 2 \times 2 = 4$, as required.

Strong Induction hypothesis: Suppose that the formula $e_n = (n+1)2^n$ holds for all values of n from 0 to k. We need to prove that $e_{k+1} = [(k+1) + 1]2^{k+1} = (k+2)2^{k+1}$. Observe that

$$e_{k+1} = 4(e_k - e_{k-1})$$
, by definition
= $4[(k+1)2^k - k2^{k-1}]$, by the induction hypothesis
= $2(k+1)2^{k+1} - k2^{k+1}$
= $[2(k+1) - k]2^{k+1}$
= $(k+2)2^{k+1}$

as required. Therefore by the **principle of mathematical induction**, **strong version**, the inequality holds for all $n \in \mathbb{N}$. QED **20.14** For each element a of A we must have $f(a) \in \{0, 1\}$. Since exactly k of the n elements of A must map to 1, this can be done in $\binom{n}{k}$ ways.