MthSc 119, 22.1abcdg, 31.1abcde, 31.2, 31.9 abc

- **22.1** (a) $g \circ f$ is defined and is equal to $\{(1,1), (2,1), (3,1)\}$. $f \circ g$ is defined and is equal to $\{(2,2), (3,2), (4,2)\}$. $f \circ g \neq g \circ f$.
- (b) $g \circ f$ is defined and is equal to $\{(1,1),(2,2),(3,3)\}$. $f \circ g$ is defined and is equal to $\{(2,2),(3,3),(4,4)\}$. $f \circ g \neq g \circ f$.
- (c) $g \circ f$ is defined and is equal to $\{(1,0),(2,5),(3,3)\}$. $f \circ g$ is not defined since $0 \in \text{im } g$ but $0 \notin \text{dom } f$.
- (f) $g \circ f$ is defined and is equal to $(x^2 1)^2 + 1 = x^4 2x^2 + 2$. $f \circ g$ is also defined. It is equal to $(x^2 + 1)^2 1 = x^4 + 2x^2$. So $f \circ g \neq g \circ f$.
- (g) $g \circ f$ is defined and equals (x+3)-7=x-4. $f \circ g$ is defined and equals (x-7)+3=x-4. So $f \circ g=g \circ f$.

31.1

- (a) q = 33 and r = 1.
- (b) q = -34 and r = 2.
- (c) q = 33 and r = 0.
- (d) q = -33 and r = 0.
- (e) q = 0 and r = 0.

31.2

- (a) $100 \operatorname{div} 3 = 33 \text{ and } 100 \operatorname{mod} 3 = 1.$
- (b) $-100 \operatorname{div} 3 = -34 \operatorname{and} -100 \operatorname{mod} 3 = 2.$
- (c) $99 \operatorname{div} 3 = 33 \text{ and } 99 \operatorname{mod} 3 = 0.$
- (d) $-99 \operatorname{div} 3 = -33 \text{ and } -99 \operatorname{mod} 3 = 0.$
- (e) 0 div 3 = 0 and 0 mod 3 = 0.

31.9

- (a) Let p and q be polynomials. We say that p divides q (and we write p|q) provided there is a polynomial r so that q=pr. There is a typo in the book for the second part of this question: It should read "Why is $(x-3)|(x^3-3x^2+3x-9)$." The answer is: "because $x^3-3x^2+3x-9=(x-3)(x^2+3)$.
- (b) Let p = x + 1 and let q = 2x + 2. Then p|q because q = (2)p and q|p because $p = \frac{1}{2}q$.
- (c) p|q and q|p iff there is a nonzero rational number r so that p=rq.