22.1 (a) \(g \circ f \) is defined and is equal to \(\{(1, 1), (2, 1), (3, 1)\} \). \(f \circ g \) is defined and is equal to \(\{(2, 2), (3, 2), (4, 2)\} \). \(f \circ g \neq g \circ f \).
(b) \(g \circ f \) is defined and is equal to \(\{(1, 1), (2, 2), (3, 3)\} \). \(f \circ g \) is defined and is equal to \(\{(2, 2), (3, 3), (4, 4)\} \). \(f \circ g \neq g \circ f \).
(c) \(g \circ f \) is defined and is equal to \(\{(1, 0), (2, 5), (3, 3)\} \). \(f \circ g \) is defined and is equal to \(\{(2, 2), (3, 3), (4, 4)\} \). \(f \circ g \neq g \circ f \).
(f) \(g \circ f \) is defined and is equal to \((x^2 - 1)^2 + 1 = x^4 - 2x^2 + 2 \). \(f \circ g \) is also defined. It is equal to \((x^2 + 1)^2 - 1 = x^4 + 2x^2 \). So \(f \circ g \neq g \circ f \).
(g) \(g \circ f \) is defined and equals \((x + 3) - 7 = x - 4 \). \(f \circ g \) is defined and equals \((x - 7) + 3 = x - 4 \). So \(f \circ g = g \circ f \).

31.1
(a) \(q = 33 \) and \(r = 1 \).
(b) \(q = -34 \) and \(r = 2 \).
(c) \(q = 33 \) and \(r = 0 \).
(d) \(q = -33 \) and \(r = 0 \).
(e) \(q = 0 \) and \(r = 0 \).

31.2
(a) \(100 \div 3 = 33 \) and \(100 \mod 3 = 1 \).
(b) \(-100 \div 3 = -34 \) and \(-100 \mod 3 = 2 \).
(c) \(99 \div 3 = 33 \) and \(99 \mod 3 = 0 \).
(d) \(-99 \div 3 = -33 \) and \(-99 \mod 3 = 0 \).
(e) \(0 \div 3 = 0 \) and \(0 \mod 3 = 0 \).

31.9
(a) Let \(p \) and \(q \) be polynomials. We say that \(p \) divides \(q \) (and we write \(p | q \)) provided there is a polynomial \(r \) so that \(q = pr \). There is a typo in the book for the second part of this question: It should read “Why is \((x - 3)(x^3 - 3x^2 + 3x - 9) \)?” The answer is: “because \(x^3 - 3x^2 + 3x - 9 = (x - 3)(x^2 + 3) \).
(b) Let \(p = x + 1 \) and let \(q = 2x + 2 \). Then \(p | q \) because \(q = (2)p \) and \(q | p \) because \(p = \frac{1}{2}q \).
(c) \(p | q \) and \(q | p \) iff there is a nonzero rational number \(r \) so that \(p = rq \).