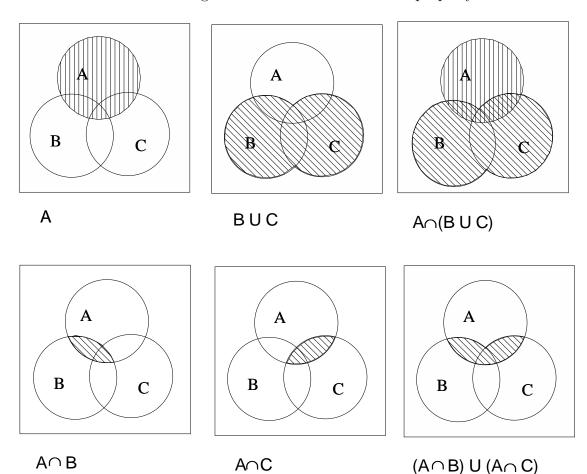
MthSc 119, section 10

10.1 (a)
$$A \cup B = \{1, 2, 3, 4, 5, 6, 7\}.$$

- (b) $A \cap B = \{4, 5\}.$
- (c) $A B = \{1, 2, 3\}.$
- (d) $B A = \{6, 7\}.$
- (e) $A \triangle B = \{1, 2, 3, 6, 7\}.$
- (f) $A \times B = \{(1,4), (1,5), (1,6), (1,7), (2,4), (2,5), (2,6), (2,7), (3,4), (3,5), (2,6), (2,7), (3,4), (3,5), (3,6), ($
- (3,6), (3,7), (4,4), (4,5), (4,6), (4,7), (5,4), (5,5), (5,6), (5,7)
- (g) $B \times A = \{(4,1), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5), (5,4), (5,5), (5,4), (5,5), (5,4), (5,5), (5,4), (5,5), (5,4), (5,5), (5,4), (5,5), (5,4), (5,5), (5,4), (5,5), ($
- (6,1), (6,2), (6,3), (6,4), (6,5), (7,1), (7,2), (7,3), (7,4), (7,5).

10.3 Here is a Venn diagram for the other distributive property:



- **10.5** This is false. Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, and $C = \{1, 5\}$. Notice that $A \cap B \cap C = \emptyset$, so these sets satisfy the hypothesis of the statement. But $|A \cup B \cup C| = 5$, while |A| + |B| + |C| = 8.
- **10.8** This is false. Here is a counter-example: let $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$. Then $|A \triangle B| = 4$ but $|A| + |B| |A \cap B| = 3 + 3 1 = 5$.
- **10.14** We will show that A B = B A iff A = B.
- (⇒) Suppose A = B. Then $A B = \emptyset$ and $B A = \emptyset$ (details were shown in class) and so A B = B A.
- (\Leftarrow) Suppose A-B=B-A. Note that this implies that $A-B=B-A=\emptyset$ an element cannot both be in A (as in A-B) and not in A (as in A-B) and since $A-B=\emptyset$, we have $A\subseteq B$, and since $B-A=\emptyset$ we have $B\subseteq A$. Therefore A=B. QED
- **10.16** (a) A (B C) = (A B) C is false. A counterexample is $A = \{1, 3\}$, $B = \{3, 4\}$ and $C = \{3, 5\}$.
- (b) (A B) C = (A C) B is true. Here is a proof:

$$(A - B) - C = \{x : x \in (A - B) \text{ and } x \notin C\}$$

$$= \{x : x \in A \text{ and } x \notin B \text{ and } x \notin C\}$$

$$= \{x : x \in A \text{ and } x \notin C \text{ and } x \notin B\}$$

$$= \{x : (x \in A \text{ and } x \notin C) \text{ and } x \notin B\}$$

$$= \{x : (x \in A - C) \text{ and } x \notin B\}$$

$$= \{x : x \in (A - C) - B\}$$

$$= (A - C) - B.$$

- (c) $(A \cup B) C = (A C) \cap (B C)$ is false. A counterexample is $A = \{1, 2\}$, $B = \{2, 3\}$ and $C = \{4\}$.
- (d) "If A = B C then $B = A \cup C$ " is false. A counterexample is $A = \{1\}$, $B = \{1, 2\}$ and $C = \{2, 3\}$.
- (f) |A B| = |A| |B| is false. A counterexample is $A = \{1, 2\}$ and $B = \{2, 3, 4\}$.
- 10.21 See solutions for the same problem on quiz4.