Section 20

- **20.1** (a) f is a function. dom $f = \{1, 3\}$. im $f = \{2, 4\}$. f is one-to-one. $f^{-1} = \{(2, 1), (4, 3)\}$.
- (b) f is a function. dom $f = \mathbb{Z}$. im f is the set of all even integers. f is one-to-one and $f^{-1} = \{(x,y) : x,y \in \mathbb{Z}, 2y = x\}$.
- (c) f is a function. dom $f = \mathbb{Z}$. im $f = \mathbb{Z}$. f is one-to-one. $f^{-1} = f$.
- (d) f is not a function since $(0,1), (0,2) \in f$.
- (e) f is a function. dom $f = \mathbb{Z}$. im f is the set of all perfect squares. f is not one-to-one since f(2) = f(-2) but $2 \neq -2$.
- (g) f is not a function since $(0,1), (0,-1) \in f$.
- **20.4** $\{(1,3),(2,3)\}$ is neither onto nor one-to-one.
- $\{(1,3),(2,4)\}$ is both onto and one-to-one.
- $\{(1,4),(2,4)\}$ is neither onto nor one-to-one.
- $\{(1,4),(2,3)\}$ is both onto and one-to-one.

20.6 (a)
$$f = \{(1,5), (2,5), (3,6), (3,7)\}.$$

- (b) $f = \{(1,5), (2,5), (3,6), (4,6)\}.$
- (c) $f = \{(1,5), (2,5), (3,6), (4,7)\}.$
- **20.9** (a) f is one-to-one. Assume that f(a) = f(b). Then 2a = 2b and dividing both sides of the equation by 2 we get a = b. Therefore f is one-to-one.

f is not onto. Suppose for the sake of contradiction that f(x) = 5 for some $x \in \mathbb{Z}$. Then 5 = 2x and dividing both sides by 2 we get $x = 1\frac{1}{2}$, which is not an integer. $\Rightarrow \Leftarrow$ Therefore f is not onto.

(b) f is one-to-one. Assume that f(a) = f(b). Then 10 + a = 10 + b and subtracting 10 from both sides we get a = b.

f is also onto. Let x be an arbitrary integer. Observe that x-10 is also an integer and that f(x-10)=10+x-10=x. Therefore f is onto.

(d) f is not one-to-one. For example, $f(2) = \frac{2}{2} = 1$ yet also $f(3) = \frac{3-1}{2} = \frac{2}{2} = 1$. Thus f(2) = f(3) with $2 \neq 3$, so f is not not one-to-one.