MthSc 119, section 8 – INCLUDING those due 2/9/05

8.1 abcd

- (a) $\{0, 3, 6, 9\}$
- (b) {2}
- (c) $\{-2, 2\}$
- $(d) \{ \}$
- **8.2** (a) $\{x \in \mathbb{Z} : |x| \le 10\} = \{-10, -9, -8, \dots, -1, 0, 1, \dots, 8, 9, 10\}$, which has cardinality 21.
- (b) $\{x \in \mathbb{Z} : 1 \le x^2 \le 2\} = \{-1, 1\}$, which has cardinality 2.
- (c) $\{x \in \mathbb{Z} : x \in \emptyset\} = \emptyset$ since there is *no* integer contained in \emptyset . Thus the cardinality of this set is 0.
- (f) $2^{\{1,2,3\}}$ is the power set of $\{1,2,3\}$ which has cardinality $2^3 = 8$. $2^8 = 256$.
- (g) $\{x \in 2^{\{1,2,3,4\}} : |x|=1\} = \{\{1\},\{2\},\{3\},\{4\}\}\}$, which has cardinality 4.
- **8.3** (a) $2 \in \{1, 2, 3\}$.
- (b) $\{2\} \subseteq \{1, 2, 3\}.$
- (c) $\{2\} \in \{\{1\}, \{2\}, \{3\}\}.$
- (d) $\emptyset \subseteq \{1, 2, 3\}.$
- (e) $\mathbb{N} \subseteq \mathbb{Z}$.
- (f) $\{2\} \subseteq \mathbb{Z}$.
- (g) $\{2\} \in 2^{\mathbb{Z}}$.
- **8.5 (2 points)** Let $x \in A$. Thus x is an integer with 4|x. It follows that for some integer a, x = 4a = 2(2a), showing that 2|x. Hence $x \in B$. QED
- **8.7** Let $x \in C$. Thus, by the definition of C, we know that x|12. By the definition of divisible it follows that 12 = xa for some integer a. Observe that $36 = 3 \times 12 = 3(xa) = x(3a)$, showing that x|36. Hence $x \in D$. QED
- **8.8** (\Rightarrow) Suppose $C \subseteq D$. Note that $c \in C$ and thus $c \in D$. Since $c \in D$ we have c|d.
- (\Leftarrow) On the other hand, suppose c|d. To show $C\subseteq D$ let $x\in C$. Thus x|c. We have c|d, so by Proposition 3.3, we have x|d and so $x\in D$. Therefore $C\subseteq D$.
- **8.9** If $x = \emptyset$ then $x \subseteq \{x\}$ because \emptyset is a subset of any set.