Name	
QUIZ 8	
April 8, 2005	

Seat ____ MthSc 119 sec.1

1. Define the sequence e_0, e_1, e_2, \ldots as follows:

$$e_0 = 1$$
, $e_1 = 4$ and $e_n = 4(e_{n-1} - e_{n-2})$ for $n \ge 2$.

a What are the first five terms of the sequence (i.e., what are e_0 , e_1 , e_2 , e_3 and e_4)?

$$e_0 = 1$$
, $e_1 = 4$, $e_2 = 12$, $e_3 = 32$ and $e_4 = 80$.

b Prove using mathematical induction (strong version): $e_n = (n+1)2^n$ for all integers $n \ge 0$.

We will use strong induction to show that $e_n = (n+1)2^n$ for all $n \in \mathbb{N}$.

Basis cases: When n = 0, $e_0 = 1$ and $(0 + 1)2^0 = 1 \times 1 = 1$, as required. When n = 1, $e_1 = 4$ and $(1 + 1)2^1 = 2 \times 2 = 4$, as required.

Strong Induction hypothesis: Suppose that the formula $e_n = (n+1)2^n$ holds for all values of n from 0 to k. We need to prove that $e_{k+1} = [(k+1)+1]2^{k+1} = (k+2)2^{k+1}$. Observe that

$$e_{k+1} = 4(e_k - e_{k-1})$$
, by definition
= $4[(k+1)2^k - k2^{k-1}]$, by the induction hypothesis
= $2(k+1)2^{k+1} - k2^{k+1}$
= $[2(k+1) - k]2^{k+1}$
= $(k+2)2^{k+1}$

as required. Therefore by the **principle of mathematical induction, strong version**, the inequality holds for all $n \in \mathbb{N}$. QED