## Upper and Lower Bounds

James K. Peterson<br>Department of Biological Sciences and Department of Mathematical Sciences Clemson University

August 29, 2018

## Outline

(1) Upper and Lower Bounds
(2) Examples
(3) Basic Results
(4) Homework

Let $S$ be a set of real numbers. We need to make precise the idea of a set of real numbers being bounded.

## Definition

We say a set $S$ is bounded above if there is a number $M$ so that $x \leq M$ for all $x$ in $S$. We call $M$ an upper bound of $S$ or just an u.b.

## Example

If $S=\left\{y: y=x^{2}\right.$ and $\left.-1 \leq x \leq 2\right\}$, there are many u.b.'s of $S$. Some choices are $M=5, M=4.1$. Note $M=1.9$ is not an u.b.

## Example

If $S=\{y: y=\tanh (x)$ and $x \in \Re\}$, there are many u.b.'s of $S$. Some choices are $M=2, M=2.1$. Note $M=0$ is not an u.b. Draw a picture of this graph too.

Let $S$ be a set of real numbers.

## Definition

We say a set $S$ is bounded below if there is a number $m$ so that $x \geq m$ for all $x$ in $S$. We call $m$ a lower bound of $S$ or just a l.b.

## Example

If $S=\left\{y: y=x^{2}\right.$ and $\left.-1 \leq x \leq 2\right\}$, there are many I.b.'s of $S$. Some choices are $m=-2, m=-0.1$. Note $m=0.3$ is not a l.b.

## Example

If $S=\{y: y=\tanh (x)$ and $x \in \Re\}$, there are many I.b.'s of $S$. Some choices are $m=-1.1, m=-1.05$. Note $m=-0.87$ is not a I.b. Draw a picture of this graph again.

Let $S$ be a set of real numbers.

## Definition

We say a set $S$ is bounded if $S$ is bounded above and bounded below. That is, there are finite numbers $m$ and $M$ so that $m \leq x \leq M$ for all $x \in S$. We usually overestimate the bound even more and say $S$ is bounded if we can find a number $B$ so that $|x| \leq B$ for all $x \in S$. A good choice of such a $B$ is to let $B=\max (|m|,|M|)$ for any choice of l.b. $m$ and u.b. $M$.

## Example

If $S=\left\{y: y=x^{2}\right.$ and $\left.-1 \leq x<2\right\}$. here $S=[0,4)$ and so for $m=-2$ and $M=5$, a choice of $B$ is $B=5$. Of course, there are many other choices of $B$.

## Example

If $S=\{y: y=\tanh (x)$ and $x \in \Re\}$, we have $S=(-1,1)$ and for $m=-1.1$ and $M=1.2$, a choice of $B$ is $B=1.2$.

The next material is more abstract! We need to introduce the notion of least upper bound and greatest lower bound.
We also call the least upper bound the l.u.b.. It is also called the supremum of the set $S$. We use the notation $\sup (S)$ as well.
We also call the greatest lower bound the g.l.b.. It is also called the infimum of the set $S$. We use the notation $\inf (S)$ as well.

## Definition

The least upper bound, l.u.b. or sup of the set $S$ is a number $U$ satisfying
(1) $U$ is an upper bound of $S$
(2) If $M$ is any other upper bound of $S$, then $U \leq M$.

The greatest lower bound, g.l.b. or inf of the set $S$ is a number $u$ satisfying
(1) $u$ is a lower bound of $S$
(2) If $m$ is any other lower bound of $S$, then $u \geq m$.

## Example

If $S=\left\{y: y=x^{2}\right.$ and $\left.-1 \leq x<2\right\}$. here $S=[0,4)$ and so $\inf (S)=0$ and $\sup (S)=4$.

## Example

If $S=\{y: y=\tanh (x)$ and $x \in \Re\}$, we have $\inf (S)=-1$ and $\sup (S)=1$. Not the inf and sup of a set $S$ need NOT be in $S!$

## Example

If $S=\{y: \cos (2 n \pi / 3), \quad \forall n \in \mathbb{N}\}$, The only possible values in $S$ are $\cos (2 \pi / 3)=-1 / 2, \cos (4 \pi / 3)=-1 / 2$ and $\cos (6 \pi / 3)=1$. There are no other values and these 2 values are endlessly repeated in a cycle. Here $\inf (S)=-1 / 2$ and $\sup (S)=1$.

## Comment

If a set $S$ has no finite lower bound, we set $\inf (S)=-\infty$. If a set $S$ has no finite upper bound, we set $\sup (S)=\infty$.

## Comment

If the set $S=\emptyset$, we set $\inf (S)=\infty$ and $\sup (S)=-\infty$.

## Definition

We say $Q \in S$ is a maximum of $S$ if $\sup (S)=Q$. This is the same, of course, as saying $x \leq Q$ for all $x$ in $S$ which is the usual definition of an upper bound. But this is different as $Q$ is in $S$. We call $Q$ a maximizer or maximum element of $S$.
We say $q \in S$ is a minimum of $S$ if $\inf (S)=q$. Again, this is the same as saying $x \geq q$ for all $x$ in $S$ which is the usual definition of a lower bound. But this is different as $q$ is in $S$. We call $q$ a minimizer minimal element of $S$.

There is a fundamental axiom about the behavior of the real numbers which is very important.

## Axiom

## The Completeness Axiom

Let $S$ be a set of real numbers which is nonempty and bounded above. Then the supreumum of $S$ exists and is finite.
Let $S$ be a set of real numbers which is nonempty and bounded below. Then the infimum of $S$ exists and is finite.

## Comment

So nonempty bounded sets of real numbers always have a finite infimum and supremum. This does not say the set has a finite minimum and finite maximum. Another way of saying this is that we don't know if $S$ has a minimizer and maximizer.

## Theorem

Let $S$ be a nonempty set of real numbers which is bounded above. Then $\sup (S)$ exists and is finite. Then $S$ has a maximal element if and only if (IFF) $\sup (S) \in S$.

## Proof

$(\Leftarrow)$ : Assume $\sup (S)$ is in $S$. By definition, $\sup (S)$ is an upper bound of $S$ and so must satisfy $x \leq \sup (S)$ for all $x$ in $S$. This says $\sup (S)$ is a maximizer of $S$.
$(\Rightarrow)$ : Let $Q$ denote a maximizer of $S$. Then by definition $x \leq Q$ for all $x$ in $S$ and is an upper bound. So by the definition of a supremum, $\sup (S) \leq Q$. Since $Q$ is a maximizer, $Q$ is in $S$ and from the definition of upper bound, we have $Q \leq \sup (S)$ as well. This says $\sup (S) \leq Q \leq \sup (S)$ or $\sup (S)=Q$.

## Theorem

Let $S$ be a nonempty set of real numbers which is bounded below. Then $\inf (S)$ exists and is finite. Then
$S$ has a minimal element $\Leftrightarrow \inf (S) \in S$.

## Proof

$(\Leftarrow)$ : Assume $\inf (S)$ is in $S$. By definition, $\inf (S)$ is a lower bound of $S$ and so must satisfy $x \geq \inf (S)$ for all $x$ in $S$. This says $\inf (S)$ is a minimizer of $S$.
$(\Rightarrow)$ : Let $q$ denote a minimizer of $S$. Then by definition $x \geq q$ for all $x$ in $S$ and is a lower bound. So by the definition of an infimum, $q \leq \inf (S)$. Since $q$ is a minimizer, $q$ is in $S$ and from the definition of lower bound, we have $\inf (S) \leq q$ as well. This says $\inf (S) \leq q \leq \inf (S)$ or $\inf (S)=q$. $\square$

## Lemma

Infimum Tolerance Lemma: Let $S$ be a nonempty set of real numbers that is bounded below. Let $\epsilon>0$ be arbitrarily chosen. Then

$$
\exists y \in S \ni \inf (S) \leq y<\inf (S)+\epsilon
$$

## Proof

We do this by contradiction. Assume this is not true for some $\epsilon>0$. Then for all $y$ in $S$, we must have $y \geq \inf (S)+\epsilon$. But this says $\inf (S)+\epsilon$ must be a lower bound of $S$. So by the definition of infimum, we must have $\inf (S) \geq \inf (S)+\epsilon$ for a positive epsilon which is impossible. Thus our assumption is wrong and we must be able to find at least one $y$ in $S$ that satisfies $\inf (S) \leq y<\inf (S)+\epsilon$.

## Lemma

Supremum Tolerance Lemma: Let $S$ be a nonempty set of real numbers that is bounded above. Let $\epsilon>0$ be arbitrarily chosen. Then

$$
\exists y \in S \ni \sup (S)-\epsilon<y \leq \sup (S)
$$

## Proof

We do this by contradiction. Assume this is not true for some $\epsilon>0$. Then for all $y$ in $S$, we must have $y \leq \sup (S)-\epsilon$. But this says $\sup (S)-\epsilon$ must be an upper bound of $S$. So by the definition of supremum, we must have $\sup (S) \leq \sup (S)-\epsilon$ for a positive epsilon which is impossible. Thus our assumption is wrong and we must be able to find at least one $y$ in $S$ that satisfies $\sup (S)-\epsilon<y \leq \sup (S)$.

## Example

Let $f(x, y)=x+2 y$ and let $S=[0,1] \times[1,3]$ which is also $S_{x} \times S_{y}$ where $S_{x}=\{x: 0 \leq x \leq 1\}$ and $S_{y}=\{y: 1 \leq y \leq 3\}$. Note $\inf _{(x, y) \in[0,1] \times[1,3]} f(x, y)=0+2=2$ and $\sup _{(x, y) \in[0,1] \times[1,3]} f(x, y)=1+6=7$.

$$
\begin{aligned}
\inf _{1 \leq y \leq 3} f(x, y) & =\inf _{1 \leq y \leq 3}(x+2 y)=x+2 \\
\sup _{0 \leq x \leq 1} f(x, y) & =\sup _{0 \leq x \leq 1}(x+2 y)=1+2 y \\
\sup _{0 \leq x \leq 1} \inf _{1 \leq y \leq 3}(x+2 y) & =\sup _{0 \leq x \leq 1}(x+2)=3 \\
\inf _{1 \leq y \leq 3} \sup _{0 \leq x \leq 1}(x+2 y) & =\inf _{1 \leq y \leq 3}(1+2 y)=3
\end{aligned}
$$

so in this example,

$$
\inf _{y \in S_{y}} \sup _{x \in S_{x}} f(x, y)=\sup _{x \in S_{x}} \inf _{y \in S_{y}} f(x, y)
$$

## Example

Let

$$
f(x, y)=\left\{\begin{array}{lc}
0, & (x, y) \in(1 / 2,1] \times(1 / 2,1] \\
2, & (x, y) \in(1 / 2,1] \times[0,1 / 2] \text { and }[0,1 / 2] \times(1 / 2,1] \\
1, & (x, y) \in[0,1 / 2] \times[0,1 / 2]
\end{array}\right.
$$

and let $S=[0,1] \times[0,1]$ which is also $S_{x} \times S_{y}$ where $S_{x}=\{x: 0 \leq x \leq 1\}$ and $S_{y}=\{y: 0 \leq y \leq 1\}$. Note $\inf _{(x, y) \in[0,1] \times[0,1]} f(x, y)=0$ and $\sup _{(x, y) \in[0,1] \times[0,1]} f(x, y)=2$. Then, we also can find

$$
\inf _{0 \leq y \leq 1} f(x, y)= \begin{cases}1, & 0 \leq x \leq 1 / 2 \\ 0, & 1 / 2<x \leq 1\end{cases}
$$

and

$$
\sup _{0 \leq x \leq 1} f(x, y)= \begin{cases}2, & 0 \leq y \leq 1 / 2 \\ 2, & 1 / 2<y \leq 1\end{cases}
$$

## Example

(Continued)

$$
\sup _{0 \leq x \leq 1} \inf _{0 \leq y \leq 1} f(x, y)=\sup _{0 \leq x \leq 1} \begin{cases}1, & 0 \leq x \leq 1 / 2 \\ 0, & 1 / 2<x \leq 1\end{cases}
$$

and

$$
\inf _{0 \leq y \leq 1} \sup _{0 \leq x \leq 1} f(x, y)=\inf _{0 \leq y \leq 1}\left\{\begin{array}{ll}
2, & 0 \leq y \leq 1 / 2 \\
2, & 1 / 2<y \leq 1
\end{array}=2\right.
$$

so in this example

$$
\inf _{y \in S_{y}} \sup _{x \in S_{x}} f(x, y) \neq \sup _{x \in S_{x}} \inf _{y \in S_{y}} f(x, y)
$$

and in fact

$$
\sup _{x \in S_{x}} \inf _{y \in S_{y}} f(x, y)<\inf _{y \in S_{y}} \sup _{x \in S_{x}} f(x, y)
$$

- The moral here is that order matters. For example, in an applied optimization problem, it is not always true that

$$
\min _{x} \max _{y} f(x, y)=\max _{y} \min _{x} f(x, y)
$$

where $x$ and $y$ come from some domain set $S$.

- The moral here is that order matters. For example, in an applied optimization problem, it is not always true that

$$
\min _{x} \max _{y} f(x, y)=\max _{y} \min _{x} f(x, y)
$$

where $x$ and $y$ come from some domain set $S$.

- So it is probably important to find out when the order does not matter because it might be easier to compute in one ordering than another.


## Theorem

Let $S$ be a nonempty bounded set of real numbers. Then $\inf (S)$ and $\sup (S)$ are unique.

## Proof

By the completeness axiom, since $S$ is bounded and nonempty, we know $\inf (S)$ and $\sup (S)$ are finite numbers. Let $u_{2}$ satisfy the definition of supremum also. Then, we know $u_{2} \leq M$ for all upper bounds $M$ of $S$ and in particular since $\sup (S)$ is an upper bound too, we must have $u_{2} \leq \sup (S)$. But since $\sup (S)$ is a supremum, by definition, we also know $\sup (S) \leq u_{2}$ as $u_{2}$ is an upper bound. Combining, we have $u_{2} \leq \sup (S) \leq u_{2}$ which tells us $u_{2}=\sup (S)$. A similar argument shows the $\inf (S)$ is also unique. $\square$

## Homework 4

4.1 Let

$$
f(x, y)=\left\{\begin{array}{cc}
3, & (x, y) \in(1 / 2,1] \times(1 / 2,1] \\
-2, & (x, y) \in(1 / 2,1] \times[0,1 / 2] \text { and }[0,1 / 2] \times(1 / 2,1] \\
4, & (x, y) \in[0,1 / 2] \times[0,1 / 2]
\end{array}\right.
$$

and let $S=[0,1] \times[0,1]$ which is also $S_{x} \times S_{y}$ where $S_{x}=\{x: 0 \leq x \leq 1\}$ and $S_{y}=\{y: 0 \leq y \leq 1\}$. Find
(1) $\inf _{(x, y) \in S} f(x, y)$, and $\sup _{(x, y) \in S} f(x, y)$,
(2) $\inf _{y \in S_{y}} \sup _{x \in S_{x}} f(x, y)$ and $\sup _{x \in S_{x}} \inf _{y \in S_{y}} f(x, y)$.
(3) $\inf _{x \in S_{x}} \sup _{y \in S_{y}} f(x, y)$ and $\sup _{y \in S_{y}} \inf _{x \in S_{x}} f(x, y)$.
4.2 Let $S=\left\{z: z=e^{-x^{2}-y^{2}}\right.$ for $\left.(x, y) \in \Re^{2}\right\}$. Find $\inf (S)$ and $\sup (S)$. Does the minimum and maximum of $S$ exist and if so what are their values?

