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Upper and Lower Bounds

Let S be a set of real numbers. We need to make precise the idea of a
set of real numbers being bounded.

Definition

We say a set S is bounded above if there is a number M so that
x ≤ M for all x in S . We call M an upper bound of S or just an u.b.

Example

If S = {y : y = x2 and − 1 ≤ x ≤ 2}, there are many u.b.’s of S . Some
choices are M = 5, M = 4.1. Note M = 1.9 is not an u.b.

Example

If S = {y : y = tanh(x) and x ∈ <}, there are many u.b.’s of S . Some
choices are M = 2, M = 2.1. Note M = 0 is not an u.b. Draw a picture
of this graph too.
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Upper and Lower Bounds

Let S be a set of real numbers.

Definition

We say a set S is bounded below if there is a number m so that
x ≥ m for all x in S . We call m a lower bound of S or just a l.b.

Example

If S = {y : y = x2 and − 1 ≤ x ≤ 2}, there are many l.b.’s of S . Some
choices are m = −2, m = −0.1. Note m = 0.3 is not a l.b.

Example

If S = {y : y = tanh(x) and x ∈ <}, there are many l.b.’s of S . Some
choices are m = −1.1, m = −1.05. Note m = −0.87 is not a l.b. Draw a
picture of this graph again.
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Upper and Lower Bounds

Let S be a set of real numbers.

Definition

We say a set S is bounded if S is bounded above and bounded below.
That is, there are finite numbers m and M so that m ≤ x ≤ M for all
x ∈ S . We usually overestimate the bound even more and say S is
bounded if we can find a number B so that |x | ≤ B for all x ∈ S . A
good choice of such a B is to let B = max(|m|, |M|) for any choice of
l.b. m and u.b. M.

Example

If S = {y : y = x2 and − 1 ≤ x < 2}. here S = [0, 4) and so for
m = −2 and M = 5, a choice of B is B = 5. Of course, there are many
other choices of B.

Example

If S = {y : y = tanh(x) and x ∈ <}, we have S = (−1, 1) and for
m = −1.1 and M = 1.2, a choice of B is B = 1.2.
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Upper and Lower Bounds

The next material is more abstract! We need to introduce the notion of
least upper bound and greatest lower bound.
We also call the least upper bound the l.u.b.. It is also called the
supremum of the set S . We use the notation sup(S) as well.
We also call the greatest lower bound the g.l.b.. It is also called the
infimum of the set S . We use the notation inf(S) as well.

Definition

The least upper bound, l.u.b. or sup of the set S is a number U
satisfying

1 U is an upper bound of S

2 If M is any other upper bound of S , then U ≤ M.

The greatest lower bound, g.l.b. or inf of the set S is a number u
satisfying

1 u is a lower bound of S

2 If m is any other lower bound of S , then u ≥ m.
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Upper and Lower Bounds

Example

If S = {y : y = x2 and − 1 ≤ x < 2}. here S = [0, 4) and so inf(S) = 0
and sup(S) = 4.

Example

If S = {y : y = tanh(x) and x ∈ <}, we have inf (S) = −1 and
sup(S) = 1. Not the inf and sup of a set S need NOT be in S!

Example

If S = {y : cos(2nπ/3), ∀n ∈ N}, The only possible values in S are
cos(2π/3) = −1/2, cos(4π/3) = −1/2 and cos(6π/3) = 1. There are no
other values and these 2 values are endlessly repeated in a cycle. Here
inf(S) = −1/2 and sup(S) = 1.
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Upper and Lower Bounds

Comment

If a set S has no finite lower bound, we set inf(S) = −∞. If a set S has
no finite upper bound, we set sup(S) =∞.

Comment

If the set S = ∅, we set inf(S) =∞ and sup(S) = −∞.

Definition

We say Q ∈ S is a maximum of S if sup(S) = Q. This is the same, of
course, as saying x ≤ Q for all x in S which is the usual definition of
an upper bound. But this is different as Q is in S . We call Q a
maximizer or maximum element of S .
We say q ∈ S is a minimum of S if inf(S) = q. Again, this is the
same as saying x ≥ q for all x in S which is the usual definition of a
lower bound. But this is different as q is in S . We call q a minimizer
minimal element of S .
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Upper and Lower Bounds

There is a fundamental axiom about the behavior of the real numbers
which is very important.

Axiom

The Completeness Axiom
Let S be a set of real numbers which is nonempty and bounded above.
Then the supreumum of S exists and is finite.
Let S be a set of real numbers which is nonempty and bounded below.
Then the infimum of S exists and is finite.

Comment

So nonempty bounded sets of real numbers always have a finite infimum
and supremum. This does not say the set has a finite minimum and finite
maximum. Another way of saying this is that we don’t know if S has a
minimizer and maximizer.



MATH 4530: Analysis One

Upper and Lower Bounds

Theorem

Let S be a nonempty set of real numbers which is bounded above.
Then sup(S) exists and is finite. Then S has a maximal element if and
only if (IFF) sup(S) ∈ S.

Proof

(⇐): Assume sup(S) is in S. By definition, sup(S) is an upper bound of
S and so must satisfy x ≤ sup(S) for all x in S. This says sup(S) is a
maximizer of S.
(⇒): Let Q denote a maximizer of S. Then by definition x ≤ Q for all x
in S and is an upper bound. So by the definition of a supremum,
sup(S) ≤ Q. Since Q is a maximizer, Q is in S and from the definition of
upper bound, we have Q ≤ sup(S) as well. This says
sup(S) ≤ Q ≤ sup(S) or sup(S) = Q.
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Upper and Lower Bounds

Theorem

Let S be a nonempty set of real numbers which is bounded below.
Then inf(S) exists and is finite. Then
S has a minimal element ⇔ inf(S) ∈ S.

Proof

(⇐): Assume inf(S) is in S. By definition, inf(S) is a lower bound of S
and so must satisfy x ≥ inf(S) for all x in S. This says inf(S) is a
minimizer of S.
(⇒): Let q denote a minimizer of S. Then by definition x ≥ q for all x
in S and is a lower bound. So by the definition of an infimum,
q ≤ inf(S). Since q is a minimizer, q is in S and from the definition of
lower bound, we have inf(S) ≤ q as well. This says inf(S) ≤ q ≤ inf(S)
or inf(S) = q.
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Upper and Lower Bounds

Lemma

Infimum Tolerance Lemma: Let S be a nonempty set of real
numbers that is bounded below. Let ε > 0 be arbitrarily chosen. Then

∃ y ∈ S 3 inf(S) ≤ y < inf(S) + ε

Proof

We do this by contradiction. Assume this is not true for some ε > 0.
Then for all y in S, we must have y ≥ inf(S) + ε. But this says
inf(S) + ε must be a lower bound of S. So by the definition of infimum,
we must have inf(S) ≥ inf(S) + ε for a positive epsilon which is
impossible. Thus our assumption is wrong and we must be able to find at
least one y in S that satisfies inf(S) ≤ y < inf(S) + ε.
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Upper and Lower Bounds

Lemma

Supremum Tolerance Lemma: Let S be a nonempty set of real
numbers that is bounded above. Let ε > 0 be arbitrarily chosen. Then

∃ y ∈ S 3 sup(S) − ε < y ≤ sup(S)

Proof

We do this by contradiction. Assume this is not true for some ε > 0.
Then for all y in S, we must have y ≤ sup(S)− ε. But this says
sup(S)− ε must be an upper bound of S. So by the definition of
supremum, we must have sup(S) ≤ sup(S)− ε for a positive epsilon
which is impossible. Thus our assumption is wrong and we must be able
to find at least one y in S that satisfies sup(S) − ε < y ≤ sup(S).
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Examples

Example

Let f (x , y) = x + 2y and let S = [0, 1]× [1, 3] which is also Sx × Sy
where Sx = {x : 0 ≤ x ≤ 1} and Sy = {y : 1 ≤ y ≤ 3}. Note
inf(x,y)∈[0,1]×[1,3] f (x , y) = 0 + 2 = 2 and
sup(x,y)∈[0,1]×[1,3] f (x , y) = 1 + 6 = 7.

inf
1≤y≤3

f (x , y) = inf
1≤y≤3

(x + 2y) = x + 2

sup
0≤x≤1

f (x , y) = sup
0≤x≤1

(x + 2y) = 1 + 2y

sup
0≤x≤1

inf
1≤y≤3

(x + 2y) = sup
0≤x≤1

(x + 2) = 3

inf
1≤y≤3

sup
0≤x≤1

(x + 2y) = inf
1≤y≤3

(1 + 2y) = 3

so in this example,

inf
y∈Sy

sup
x∈Sx

f (x , y) = sup
x∈Sx

inf
y∈Sy

f (x , y)

.
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Examples

Example

Let

f (x , y) =

0, (x , y) ∈ (1/2, 1]× (1/2, 1]
2, (x , y) ∈ (1/2, 1]× [0, 1/2] and [0, 1/2]× (1/2, 1]
1, (x , y) ∈ [0, 1/2]× [0, 1/2]

and let S = [0, 1]× [0, 1] which is also Sx × Sy where
Sx = {x : 0 ≤ x ≤ 1} and Sy = {y : 0 ≤ y ≤ 1}. Note
inf(x,y)∈[0,1]×[0,1] f (x , y) = 0 and sup(x,y)∈[0,1]×[0,1] f (x , y) = 2. Then,
we also can find

inf
0≤y≤1

f (x , y) =

{
1, 0 ≤ x ≤ 1/2
0, 1/2 < x ≤ 1

and

sup
0≤x≤1

f (x , y) =

{
2, 0 ≤ y ≤ 1/2
2, 1/2 < y ≤ 1
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Examples

Example

(Continued)

sup
0≤x≤1

inf
0≤y≤1

f (x , y) = sup
0≤x≤1

{
1, 0 ≤ x ≤ 1/2
0, 1/2 < x ≤ 1

= 1.

and

inf
0≤y≤1

sup
0≤x≤1

f (x , y) = inf
0≤y≤1

{
2, 0 ≤ y ≤ 1/2
2, 1/2 < y ≤ 1

= 2

so in this example

inf
y∈Sy

sup
x∈Sx

f (x , y) 6= sup
x∈Sx

inf
y∈Sy

f (x , y)

and in fact
sup
x∈Sx

inf
y∈Sy

f (x , y) < inf
y∈Sy

sup
x∈Sx

f (x , y)
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Examples

The moral here is that order matters. For example, in an applied
optimization problem, it is not always true that

min
x

max
y

f (x , y) = max
y

min
x

f (x , y)

where x and y come from some domain set S .

So it is probably important to find out when the order does not
matter because it might be easier to compute in one ordering than
another.
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Examples

The moral here is that order matters. For example, in an applied
optimization problem, it is not always true that

min
x

max
y

f (x , y) = max
y

min
x

f (x , y)

where x and y come from some domain set S .

So it is probably important to find out when the order does not
matter because it might be easier to compute in one ordering than
another.
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Basic Results

Theorem

Let S be a nonempty bounded set of real numbers. Then inf(S) and
sup(S) are unique.

Proof

By the completeness axiom, since S is bounded and nonempty, we know
inf(S) and sup(S) are finite numbers. Let u2 satisfy the definition of
supremum also. Then, we know u2 ≤ M for all upper bounds M of S and
in particular since sup(S) is an upper bound too, we must have
u2 ≤ sup(S). But since sup(S) is a supremum, by definition, we also
know sup(S) ≤ u2 as u2 is an upper bound. Combining, we have
u2 ≤ sup(S) ≤ u2 which tells us u2 = sup(S). A similar argument shows
the inf(S) is also unique.
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Homework

Homework 4

4.1 Let

f (x , y) =

 3, (x , y) ∈ (1/2, 1]× (1/2, 1]
−2, (x , y) ∈ (1/2, 1]× [0, 1/2] and [0, 1/2]× (1/2, 1]
4, (x , y) ∈ [0, 1/2]× [0, 1/2]

and let S = [0, 1]× [0, 1] which is also Sx × Sy where
Sx = {x : 0 ≤ x ≤ 1} and Sy = {y : 0 ≤ y ≤ 1}. Find

1 inf(x,y)∈S f (x , y), and sup(x,y)∈S f (x , y),
2 infy∈Sy supx∈Sx

f (x , y) and supx∈Sx
infy∈Sy f (x , y).

3 infx∈Sx supy∈Sy
f (x , y) and supy∈Sy

infx∈Sx f (x , y).

4.2 Let S = {z : z = e−x
2−y2

for (x , y) ∈ <2}. Find inf(S) and sup(S).
Does the minimum and maximum of S exist and if so what are their
values?
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