# Upper and Lower Bounds

### James K. Peterson

Department of Biological Sciences and Department of Mathematical Sciences Clemson University

August 29, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Outline



## 2 Examples







Let S be a set of real numbers. We need to make precise the idea of a set of real numbers being **bounded**.

# **Definition** We say a set *S* is bounded above if there is a number *M* so that $x \le M$ for all *x* in *S*. We call *M* an **upper bound** of *S* or just an **u.b.**

#### Example

If  $S = \{y : y = x^2 \text{ and } -1 \le x \le 2\}$ , there are many u.b.'s of S. Some choices are M = 5, M = 4.1. Note M = 1.9 is **not** an u.b.

#### Example

If  $S = \{y : y = tanh(x) \text{ and } x \in \Re\}$ , there are many u.b.'s of S. Some choices are M = 2, M = 2.1. Note M = 0 is **not** an u.b. Draw a picture of this graph too.

Let S be a set of real numbers.

#### Definition

We say a set S is bounded below if there is a number m so that  $x \ge m$  for all x in S. We call m a **lower bound** of S or just a **l.b.** 

#### Example

If  $S = \{y : y = x^2 \text{ and } -1 \le x \le 2\}$ , there are many l.b.'s of S. Some choices are m = -2, m = -0.1. Note m = 0.3 is **not** a l.b.

#### Example

If  $S = \{y : y = tanh(x) \text{ and } x \in \Re\}$ , there are many l.b.'s of S. Some choices are m = -1.1, m = -1.05. Note m = -0.87 is **not** a l.b. Draw a picture of this graph again.

#### Let S be a set of real numbers.

#### Definition

We say a set S is bounded if S is bounded above and bounded below. That is, there are finite numbers m and M so that  $m \le x \le M$  for all  $x \in S$ . We usually overestimate the bound even more and say S is bounded if we can find a number B so that  $|x| \le B$  for all  $x \in S$ . A good choice of such a B is to let  $B = \max(|m|, |M|)$  for any choice of l.b. m and u.b. M.

#### Example

If  $S = \{y : y = x^2 \text{ and } -1 \le x < 2\}$ . here S = [0, 4) and so for m = -2 and M = 5, a choice of B is B = 5. Of course, there are many other choices of B.

#### Example

If 
$$S = \{y : y = tanh(x) \text{ and } x \in \Re\}$$
, we have  $S = (-1, 1)$  and for  $m = -1.1$  and  $M = 1.2$ , a choice of B is  $B = 1.2$ .

The next material is more abstract! We need to introduce the notion of **least upper bound** and **greatest lower bound**. We also call the **least upper bound** the **l.u.b.**. It is also called the **supremum** of the set S. We use the notation sup(S) as well. We also call the **greatest lower bound** the **g.l.b.**. It is also called the **infimum** of the set S. We use the notation inf(S) as well.

#### Definition

The **least upper bound**, **l.u.b.** or sup of the set S is a number U satisfying

- I is an upper bound of S
- 2 If *M* is any other upper bound of *S*, then  $U \leq M$ .

The **greatest lower bound**, **g.l.b.** or inf of the set S is a number u satisfying

• u is a lower bound of S

2 If m is any other lower bound of S, then  $u \ge m$ .

If  $S = \{y : y = x^2 \text{ and } -1 \le x < 2\}$ . here S = [0, 4) and so  $\inf(S) = 0$  and  $\sup(S) = 4$ .

#### Example

If 
$$S = \{y : y = tanh(x) \text{ and } x \in \Re\}$$
, we have  $inf(S) = -1$  and  $sup(S) = 1$ . Not the *inf* and sup of a set S need **NOT** be in S!

#### Example

If  $S = \{y : \cos(2n\pi/3), \forall n \in \mathbb{N}\}\)$ , The only possible values in S are  $\cos(2\pi/3) = -1/2$ ,  $\cos(4\pi/3) = -1/2$  and  $\cos(6\pi/3) = 1$ . There are no other values and these 2 values are endlessly repeated in a cycle. Here  $\inf(S) = -1/2$  and  $\sup(S) = 1$ .

#### Comment

If a set S has no finite lower bound, we set  $\inf(S) = -\infty$ . If a set S has no finite upper bound, we set  $\sup(S) = \infty$ .

#### Comment

If the set 
$$S = \emptyset$$
, we set  $\inf(S) = \infty$  and  $\sup(S) = -\infty$ .

#### Definition

We say  $Q \in S$  is a maximum of S if  $\sup(S) = Q$ . This is the same, of course, as saying  $x \leq Q$  for all x in S which is the usual definition of an upper bound. But this is different as Q is in S. We call Q a **maximizer** or **maximum element** of S. We say  $q \in S$  is a minimum of S if  $\inf(S) = q$ . Again, this is the same as saying  $x \geq q$  for all x in S which is the usual definition of a lower bound. But this is different as q is in S. We call q a **minimizer minimal element** of S. There is a fundamental **axiom** about the behavior of the real numbers which is very important.

#### Axiom

#### The Completeness Axiom

Let S be a set of real numbers which is nonempty and bounded above. Then the supreumum of S exists and is finite.

Let S be a set of real numbers which is nonempty and bounded below. Then the infimum of S exists and is finite.

#### Comment

So nonempty bounded sets of real numbers always have a finite infimum and supremum. This does not say the set has a finite minimum and finite maximum. Another way of saying this is that we don't know if S has a minimizer and maximizer.

#### Theorem

Let S be a nonempty set of real numbers which is bounded above. Then  $\sup(S)$  exists and is finite. Then S has a maximal element if and only if (IFF)  $\sup(S) \in S$ .

#### Proof

( $\Leftarrow$ ): Assume sup(S) is in S. By definition, sup(S) is an upper bound of S and so must satisfy  $x \leq sup(S)$  for all x in S. This says sup(S) is a maximizer of S.

(⇒): Let Q denote a maximizer of S. Then by definition  $x \le Q$  for all x in S and is an upper bound. So by the definition of a supremum,  $\sup(S) \le Q$ . Since Q is a maximizer, Q is in S and from the definition of upper bound, we have  $Q \le \sup(S)$  as well. This says  $\sup(S) \le Q \le \sup(S)$  or  $\sup(S) = Q$ . □

#### Theorem

Let S be a nonempty set of real numbers which is bounded below. Then inf(S) exists and is finite. Then S has a minimal element  $\Leftrightarrow inf(S) \in S$ .

#### Proof

( $\Leftarrow$ ): Assume  $\inf(S)$  is in S. By definition,  $\inf(S)$  is a lower bound of S and so must satisfy  $x \ge \inf(S)$  for all x in S. This says  $\inf(S)$  is a minimizer of S.

 $(\Rightarrow)$ : Let q denote a minimizer of S. Then by definition  $x \ge q$  for all x in S and is a lower bound. So by the definition of an infimum,  $q \le \inf(S)$ . Since q is a minimizer, q is in S and from the definition of lower bound, we have  $\inf(S) \le q$  as well. This says  $\inf(S) \le q \le \inf(S)$  or  $\inf(S) = q$ .  $\Box$ 

#### Lemma

**Infimum Tolerance Lemma**: Let *S* be a nonempty set of real numbers that is bounded below. Let  $\epsilon > 0$  be arbitrarily chosen. Then

 $\exists y \in S \ \ni \inf(S) \le y < \inf(S) + \epsilon$ 

#### Proof

We do this by contradiction. Assume this is not true for some  $\epsilon > 0$ . Then for all y in S, we must have  $y \ge \inf(S) + \epsilon$ . But this says  $\inf(S) + \epsilon$  must be a lower bound of S. So by the definition of infimum, we must have  $\inf(S) \ge \inf(S) + \epsilon$  for a positive epsilon which is impossible. Thus our assumption is wrong and we must be able to find at least one y in S that satisfies  $\inf(S) \le y < \inf(S) + \epsilon$ .  $\Box$ 

#### Lemma

**Supremum Tolerance Lemma**: Let S be a nonempty set of real numbers that is bounded above. Let  $\epsilon > 0$  be arbitrarily chosen. Then

 $\exists y \in S \ \ni \sup(S) - \epsilon < y \le \sup(S)$ 

#### Proof

We do this by contradiction. Assume this is not true for some  $\epsilon > 0$ . Then for all y in S, we must have  $y \leq \sup(S) - \epsilon$ . But this says  $\sup(S) - \epsilon$  must be an upper bound of S. So by the definition of supremum, we must have  $\sup(S) \leq \sup(S) - \epsilon$  for a positive epsilon which is impossible. Thus our assumption is wrong and we must be able to find at least one y in S that satisfies  $\sup(S) - \epsilon < y \leq \sup(S)$ .  $\Box$ 

Let 
$$f(x, y) = x + 2y$$
 and let  $S = [0, 1] \times [1, 3]$  which is also  $S_x \times S_y$   
where  $S_x = \{x : 0 \le x \le 1\}$  and  $S_y = \{y : 1 \le y \le 3\}$ . Note  
 $\inf_{\{x,y\}\in[0,1]\times[1,3]} f(x,y) = 0 + 2 = 2$  and  
 $\sup_{\{x,y\}\in[0,1]\times[1,3]} f(x,y) = 1 + 6 = 7$ .  
 $\lim_{1\le y\le 3} f(x,y) = \inf_{1\le y\le 3} (x + 2y) = x + 2$   
 $\sup_{0\le x\le 1} f(x,y) = \sup_{0\le x\le 1} (x + 2y) = 1 + 2y$   
 $\sup_{0\le x\le 1} \inf_{1\le y\le 3} (x + 2y) = \sup_{0\le x\le 1} (x + 2) = 3$   
 $\inf_{1\le y\le 3} \sup_{0< x< 1} (x + 2y) = \inf_{1\le y\le 3} (1 + 2y) = 3$ 

so in this example,

$$\inf_{y \in S_y} \sup_{x \in S_x} f(x, y) = \sup_{x \in S_x} \inf_{y \in S_y} f(x, y)$$

#### Let

$$f(x,y) = \begin{cases} 0, & (x,y) \in (1/2,1] \times (1/2,1] \\ 2, & (x,y) \in (1/2,1] \times [0,1/2] \text{ and } [0,1/2] \times (1/2,1] \\ 1, & (x,y) \in [0,1/2] \times [0,1/2] \end{cases}$$

and let  $S = [0, 1] \times [0, 1]$  which is also  $S_x \times S_y$  where  $S_x = \{x : 0 \le x \le 1\}$  and  $S_y = \{y : 0 \le y \le 1\}$ . Note  $\inf_{(x,y)\in[0,1]\times[0,1]} f(x,y) = 0$  and  $\sup_{(x,y)\in[0,1]\times[0,1]} f(x,y) = 2$ . Then, we also can find

$$\inf_{0 \le y \le 1} f(x, y) = \begin{cases} 1, & 0 \le x \le 1/2 \\ 0, & 1/2 < x \le 1 \end{cases}$$

and

$$\sup_{0 \le x \le 1} f(x, y) = \begin{cases} 2, & 0 \le y \le 1/2 \\ 2, & 1/2 < y \le 1 \end{cases}$$

(Continued)

$$\sup_{0 \le x \le 1} \inf_{0 \le y \le 1} f(x, y) = \sup_{0 \le x \le 1} \begin{cases} 1, & 0 \le x \le 1/2 \\ 0, & 1/2 < x \le 1 \end{cases} = 1.$$

 $\mathsf{and}$ 

$$\inf_{0 \le y \le 1} \sup_{0 \le x \le 1} f(x, y) = \inf_{0 \le y \le 1} \begin{cases} 2, & 0 \le y \le 1/2 \\ 2, & 1/2 < y \le 1 \end{cases} = 2$$

so in this example

$$\inf_{y \in S_y} \sup_{x \in S_x} f(x, y) \neq \sup_{x \in S_x} \inf_{y \in S_y} f(x, y)$$

and in fact

$$\sup_{x \in S_x} \inf_{y \in S_y} f(x, y) < \inf_{y \in S_y} \sup_{x \in S_x} f(x, y)$$

• The moral here is that **order** matters. For example, in an applied optimization problem, it is not always true that

$$\min_{x} \max_{y} f(x, y) = \max_{y} \min_{x} f(x, y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where x and y come from some domain set S.

• The moral here is that **order** matters. For example, in an applied optimization problem, it is not always true that

$$\min_{x} \max_{y} f(x, y) = \max_{y} \min_{x} f(x, y)$$

where x and y come from some domain set S.

• So it is probably important to find out when the order does not matter because it might be easier to compute in one ordering than another.

#### Theorem

Let S be a nonempty bounded set of real numbers. Then inf(S) and sup(S) are unique.

#### Proof

By the completeness axiom, since S is bounded and nonempty, we know  $\inf(S)$  and  $\sup(S)$  are finite numbers. Let  $u_2$  satisfy the definition of supremum also. Then, we know  $u_2 \leq M$  for all upper bounds M of S and in particular since  $\sup(S)$  is an upper bound too, we must have  $u_2 \leq \sup(S)$ . But since  $\sup(S)$  is a supremum, by definition, we also know  $\sup(S) \leq u_2$  as  $u_2$  is an upper bound. Combining, we have  $u_2 \leq \sup(S) \leq u_2$  which tells us  $u_2 = \sup(S)$ . A similar argument shows the  $\inf(S)$  is also unique.  $\Box$ 

## Homework 4

4.1 Let

$$f(x,y) = \begin{cases} 3, & (x,y) \in (1/2,1] \times (1/2,1] \\ -2, & (x,y) \in (1/2,1] \times [0,1/2] \text{ and } [0,1/2] \times (1/2,1] \\ 4, & (x,y) \in [0,1/2] \times [0,1/2] \end{cases}$$
  
and let  $S = [0,1] \times [0,1]$  which is also  $S_x \times S_y$  where  
 $S_x = \{x : 0 \le x \le 1\}$  and  $S_y = \{y : 0 \le y \le 1\}$ . Find  
**Q** inf(xy)  $\le f(x, y)$  and  $\sup_{x \to x \le y} f(x, y)$ 

inf<sub>(x,y)∈S</sub> f(x, y), and sup<sub>(x,y)∈S</sub> f(x, y),
 inf<sub>y∈Sy</sub> sup<sub>x∈Sx</sub> f(x, y) and sup<sub>x∈Sx</sub> inf<sub>y∈Sy</sub> f(x, y).
 inf<sub>x∈Sx</sub> sup<sub>y∈Sy</sub> f(x, y) and sup<sub>y∈Sy</sub> inf<sub>x∈Sx</sub> f(x, y).

4.2 Let  $S = \{z : z = e^{-x^2 - y^2} \text{ for } (x, y) \in \Re^2\}$ . Find  $\inf(S)$  and  $\sup(S)$ . Does the minimum and maximum of S exist and if so what are their values?