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Abstract

This thesis studies novel physics-based methods for simulating incompressible fluid flow

described by the Navier-Stokes equations (NSE) and magnetohydrodynamics equations (MHD). It

is widely accepted in computational fluid dynamics (CFD) that numerical schemes which are more

physically accurate lead to more precise flow simulations especially over long time intervals. A

prevalent theme throughout will be the inclusion of as much physical fidelity in numerical solutions

as efficiently possible. In algorithm design, model selection/development, and element choice, subtle

changes can provide better physical accuracy, which in turn provides better overall accuracy (in any

measure). To this end we develop and study more physically accurate methods for approximating

the NSE, MHD, and related systems.

Chapter 3 studies extensions of the energy and helicity preserving scheme for the 3D NSE

developed in [64], to a more general class of problems. The scheme is studied together with stabiliza-

tions of grad-div type in order to mitigate the effect of the Bernoulli pressure error on the velocity

error. We prove stability, convergence, discuss conservation properties, and present numerical ex-

periments that demonstrate the advantages of the scheme.

In Chapter 4, we study a finite element scheme for the 3D NSE that globally conserves

energy and helicity and, through the use of Scott-Vogelius elements, enforces pointwise the solenoidal

constraints for velocity and vorticity. A complete numerical analysis is given, including proofs for

conservation laws, unconditional stability and optimal convergence. We also show the method can

be efficiently computed by exploiting a connection between this method, its associated penalty

method, and the method arising from using grad-div stabilized Taylor-Hood elements. Finally, we

give numerical examples which verify the theory and demonstrate the effectiveness of the scheme.

In Chapter 5, we extend the work done in [8] that proved, under mild restrictions, grad-div

stabilized Taylor-Hood solutions of Navier-Stokes problems converge to the Scott-Vogelius solution

of that same problem. In [8] even though the analytical convergence rate was only shown to be

γ−
1
2 (where γ is the stabilization parameter), the computational results suggest the rate may be
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improvable γ−1. We prove herein the analytical rate is indeed γ−1, and extend the result to other

incompressible flow problems including Leray-α and MHD. Numerical results are given that verify

the theory.

Chapter 6 studies an efficient finite element method for the NS-ω model, that uses van Cittert

approximate deconvolution to improve accuracy and Scott-Vogelius elements to provide pointwise

mass conservative solutions and remove the dependence of the (often large) Bernoulli pressure error

on the velocity error. We provide a complete numerical analysis of the method, including well-

posedness, unconditional stability, and optimal convergence. Several numerical experiments are

given that demonstrate the performance of the scheme, and how the use of Scott-Vogelius elements

can dramatically improve solutions.

Chapter 7 extends Leray-α-deconvolution modeling to the incompressible MHD. The result-

ing model is shown to be well-posed, and have attractive limiting behavior both in its filtering radius

and order of deconvolution. Additionally, we present and study a numerical scheme for the model,

based on an extrapolated Crank-Nicolson finite element method. We show the numerical scheme

is unconditionally stable, preserves energy and cross-helicity, and optimally converges to the MHD

solution. Numerical experiments are provided that verify convergence rates, and test the scheme on

benchmark problems of channel flow over a step and the Orszag-Tang vortex problem.
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Chapter 1

Introduction

The study of fluid flow is at the forefront of many scientific fields and engineering appli-

cations such as aerodynamics, weather predictions and modeling ocean currents. It is tempting

to think that after centuries of study and great advances in computational power little, only little

knowledge might remain undiscovered. However, even the most fundamental mathematical ques-

tions remains unanswered: the existence and uniqueness of solutions in 3d of the equations of fluid

motion. Additionally, while the advances in computer technology have aided the scientific commu-

nity’s understanding of fluid flow, there are still many flows which we cannot hope to simulate with

modern computational tools. In fact, the field of computational fluid dynamics (CFD) is and will

continue to be stifled by current technologies for the foreseeable future.

This thesis is concerned with more accurately and efficiently predicting fluid flow in compu-

tational simulations. A prevalent theme throughout will be the inclusion of as much physical fidelity

in numerical solutions as efficiently possible. In algorithm design, model selection/development, ele-

ment choice, etc., subtle changes can provide better physical accuracy, which in turn provides better

overall accuracy (in any measure). To this end, we develop and study more physically accurate

methods for approximating the Navier-Stokes equations (NSE), magnetohydrodynamics (MHD),

and related models.

The NSE are derived from conservation of momentum and mass, and describe the motion

of incompressible viscous Newtonian fluid flows. The equations in dimensionless form are given by

ut − ν∆u+ u · ∇u+∇p = f, (1.0.1)

∇ · u = 0. (1.0.2)
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Here u is the fluid velocity, p is the pressure, f is an external body force, and ν is the kinematic

viscosity. The Reynolds number (Re=ν−1) is the only control parameter of the flow. For low

Reynolds number, the viscous forces dominate, making the flow smooth and easily predictable.

Flows characterized by these properties are referred to as laminar. Turbulent flows, in contrast, are

unstable and chaotic. Such flows are a result of dominating inertial forces and correspond to high

Reynolds numbers.

Coupling the NSE with Maxwell’s equations gives the MHD system, which describe the

motion of electrically conducting non-magnetic fluids, such as salt water, liquid metals (e.g. mercury

and sodium) and plasmas. MHD in dimensionless form is given by

ut +∇ · (uuT )− ν∆u+
s

2
∇(B ·B)− s∇ ·BBT +∇p = f, (1.0.3)

∇ · u = 0, (1.0.4)

Bt + νm∇× (∇×B) +∇× (B × u) = ∇× g, (1.0.5)

∇ ·B = 0, (1.0.6)

where u, p, ν and f represent the same quantities as in (1.0.1)-(1.0.2), ∇× g represents a forcing on

the magnetic field B, νm(=Re−1
m ) is the inverse of the magnetic Reynolds’ number, and the coupling

number s = Ha2

ReRem
, where Ha is the Hartmann number (the ratio of Lorentz forces to shear forces).

In the absence of viscosity and external force the NSE conserves energy (= 1
2

∫
Ω
|u|2dx).

MHD also conserves energy (= 1
2

∫
Ω

(|u|2 + s|B|2)dx) in the absence of external force, kinematic

viscosity and magnetic diffusivity . In addition to energy, under the respective conditions the 3d

NSE conserves helicity (=
∫

Ω
u ·(∇×u)) and the 3d MHD conserves cross helicity (=

∫
Ω
u ·B). More

recently, scientists have come to better understand the importance of helicity and cross helicity. In

1992 a famous paper of Moffatt and Tsoniber found helicity to be of comparable importance to

energy in the NSE [54]. Similarly, the importance of cross-helicity in MHD is also known to be of

fundamental importance [49].

Most numerical schemes which simulate fluid flow conserve energy as this typically coincides

with algorithm stability. However, numerical schemes often neglect other fundamental physical laws

or only enforce the physical laws in a weak sense. This is, in part, due to a perceived increase

in computational cost to conserve a second integral invariant. However, it is widely accepted in

CFD that physical fidelity in a numerical scheme produces more accurate predictions, especially

over longer time intervals. Thus, numerical schemes which correctly account for physical quantities

in addition to energy can give solutions which are not only more accurate, but also more physically
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relevant. Examples of such schemes include Arakawa’s energy and enstrophy conserving scheme

for the 2D NSE [1] and related extensions [22], energy and potential enstrophy schemes pioneered

by Arakawa and Lamb, and Navon, [2, 55, 56], an energy and helicity conserving scheme for 3D

axisymmetric flow by J.-G. Liu and W. Wang [49], and most recently a 3d scheme for the full NSE

with periodic boundary conditions [64].

A physical law which is commonly enforced weakly in the NSE is conservation of mass.

Physically, (1.0.2) is interpreted to mean mass is a pointwise conserved quantity in incompressible

fluid flows. However, finite element numerical schemes often only impose global mass conservation

weakly (e.g.
∫

Ω
(∇ · uh)qh = 0, where uh is the discrete velocity solution, and for each qh in the

approximating pressure space). Depending on the element choice, this can lead to mass conservation

being very inaccurate [8]. Lack of physical fidelity in such a fundamental quantity challenges the

physical relevance of a numerical solution.

One common element which can lead to poor mass conservation is the Taylor-Hood (TH)

element. The TH element uses continuous polynomials of degree k to approximate velocity and

continuous polynomials of degree (k − 1) to approximate pressure. It was found in [42, 59, 62] that

adding the identically zero term −γ∇(∇·u) at the continuous level could improve mass conservation

when using TH elements. The technique is referred to as grad-div stabilization and owes its success

to a sharp energy bound. By adding the zero term at the continuous level, the ‘usual’ [37] discrete

model satisfies

‖uMh ‖2 + ν∆t

M−1∑
n=0

‖∇un+ 1
2

h ‖2 + γ∆t

M−1∑
n=0

‖∇ · un+ 1
2

h ‖2 ≤ C(data).

Thus, as γ increases, mass conservation will improve.

Similar to the TH element, the Scott-Vogelius (SV) element [68] uses continuous polynomials

of degree k to approximate velocity. Unlike the TH element the SV element uses discontinuous

polynomials of degree (k − 1) to approximate the pressure. This modest change enforces pointwise

mass conservation but slightly increases the number of degrees of freedom in the system. It is

known that SV elements are LBB stable and admit optimal convergence properties under the mild

restrictions that k ≥ d, where d is the dimension of Ω, and solutions are computed on a barycenter

refined mesh [76] (e.g. see Figure 1.1) .

A connection has been established between the SV element solutions and the grad-div

stabilized TH element solutions to the NSE [8]. On a fixed mesh, as γ →∞ the TH solution tends

to the SV solution; that is, ‖uTHh −uSVh ‖ → 0. The authors have shown an analytic convergence rate

3
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Figure 1.1: A barycenter refined triangle

of γ
−1
2 . However, numerical experiments hint at a faster convergence rate of γ−1. In Chapter 5 we

extend the connection between the SV element solutions and the grad-div stabilized TH solutions

and show an analytic convergence rate of γ−1 for Stokes type problems.

The sacrifice of conserving physical properties is in part motivated by reducing the number

of degrees of freedom required to simulate flow problems. Turbulent flows especially devour compu-

tational resources. According to the Kolmogorov estimate, to solve NSE accurately, a mesh must

contain approximately Re
3
2 discretization points in 2d and Re

9
4 discretization points in 3d. Thus,

direct numerical simulation of turbulent flows is expensive! Recent work on FEM for the ‘α models’

[43, 44, 52, 6, 66, 50, 12, 11, 28] has shown their effectiveness at producing accurate solutions to the

NSE and the MHD on significantly coarser meshes than direct simulations require. One of the ‘α

models’, called Navier-Stokes-ω (NS-ω) appears particularly promising, and is given by

ut + (∇×DNFu)× u+∇q − ν∆u = f, (1.0.7)

∇ · u = 0. (1.0.8)

Here F denotes the Helmholtz filter: F := (−α2∆ + I)−1 where α > 0 is the filtering radius, and

DN is the N th order van Cittert approximate deconvolution operator, DN :=
∑N
n=0(I − F )n. This

model is of particular interest because, in addition to energy conservation, the model conserves a

model helicity. Moreover, it is an analog of NS-α, but can more efficiently be computed. Solving

NS-ω with SV elements enforces pointwise mass conservation in the scheme and gives more physical

significance to our solutions (Chapter 4, [51]).

Simulations for MHD flows require the same number of mesh points as simulations for NSE

flows to be successfully resolved. However, MHD flows contain an additional unknown, the magnetic

field, making MHD flows more complex than NSE flows. Thus, modeling is imperative for MHD

flows [10, 33, 35, 39, 75]. We extend the work done by Yu and Li on the MHD Leray-α model [75]
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to the MHD Leray-deconvolution model which is given by

ut −Re−1∆u+DNu · ∇u− sDNB · ∇B +∇p = f,

Bt −Re−1
m ∆B +DNu · ∇B −DNB · ∇B = ∇× g,

∇ · u = 0,

∇ ·B = 0.

We perform an analytic study of the continuous model, and the numerical scheme presented for

the model, and provide numerical experiments which show its effectiveness on benchmark problems

(Chapter 6). We remark that the discretized MHD equations are overdetermined and hence require

a Lagrange multiplier, which leads to a second solenoidal constraint in the numerical scheme. Thus,

the SV element is crucial in simulating MHD flows.

Despite enforcing solenoidal constraints pointwise the SV element presents obstacles. Specif-

ically, the SV element has a larger pressure space than the TH element; in fact the SV pressure space

can be comparable in size to the velocity space. Thus, efficiency is a concern when using the SV

element. Efficiency may be improved using Temam’s penalty method [69] as discussed in [65]. We

study a finite element scheme for the 3D NSE that employs the SV element and Temam’s penalty

method that conserves energy and helicity (Chapter 7).

The body of this thesis is comprised of seven chapters. Chapter 2 presents mathematical

preliminaries and notations which are used throughout the report, including the definitions of the

TH and SV elements. Chapter 3 extends the work done in [64] to the more general homogenous

boundary conditions. We study the scheme with two types of stabilization and show that the

scheme is stable, conserves energy and under mild conditions conserves model helicity. Lastly, we

give evidence of the advantages of the scheme by simulating a complex flow problem and comparing

against the usual Crank-Nicolson scheme for NSE.

Chapter 4 presents a study of the NS-ω turbulence model with SV elements. Channel flow

around a cylinder and over a step are benchmark flow problems which we simulate to show improved

mass conservation using SV rather than TH elements. Chapter 5 extends the work done in [8] to show

analytically grad-div stabilized TH solutions to Stokes type problems converge to the SV solutions

with rate γ−1. Chapter 6 presents the MHD Leray-deconvolution model and provides analysis of the

continuous model, the numerical scheme presented for the model, and solutions to the benchmark

problems of channel flow over a step and the Orszag-Tang vortex problem. Chapter 7 presents a

numerical scheme for NSE and an analytic study of the scheme which is based on Temam’s penalty

5



method and leads to increased efficiency in 3D computations of the benchmark problem of channel

flow over a step.
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Chapter 2

Preliminaries

For the analysis in this thesis we consider either periodic or no slip boundary conditions.

For periodic boundary conditions we assume the domain Ω is the L-periodic box (0, L)d, and for no

slip boundary conditions we assume Ω denotes a bounded, polyhedral domain in Rd (d=2, or 3).

The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms

and the Sobolev W k
p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk

p
, respectively. For the semi-norm

in W k
p (Ω) we use | · |Wk

p
. Hk is used to represent the Sobolev space W k

2 (Ω), and ‖ · ‖k denotes the

norm in Hk. For functions v(x, t) defined on the entire time interval (0, T ), we define (1 ≤ m <∞)

‖v‖∞,k := ess sup
0<t<T

‖v(t, ·)‖k , and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖mk dt

)1/m

.

In the discrete case we use the analogous norms:

‖|v|‖∞,k := max
0≤n≤M

‖vn‖k , ‖|v1/2|‖∞,k := max
0≤n≤M−1

‖vn+1/2‖k ,

‖|v|‖m,k :=

(
4t

M∑
n=0

‖vn‖mk

)1/m

, ‖|v1/2|‖m,k :=

(
4t

M−1∑
n=0

‖vn+1/2‖mk

)1/m

.

For s ∈ R we recall the spaces Hs
0 and Hs

p

Hs
0(Ω) := {w ∈ Hs(Ω), w = 0 on ∂Ω} , and

Hs
p(Ω) := {w ∈ Hs

loc(Rd), L-periodic, ∇ · w = 0,
∫

Ω
w = 0}.

The space X is H1
p (Ω) in the periodic boundary case and (H1

0 )d for Dirichlet boundary

conditions. We use as the norm on X the H1 seminorm which, because of the boundary condition, is

equivalent to the H1 norm; for v ∈ X, ‖v‖ X := ‖∇v‖. We denote the dual space of X by X ′, with
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the norm ‖·‖∗. We denote the pressure space by Q = L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω
q = 0} corresponding

to Dirichlet boundary conditions and in the periodic case Q = L2
0,p(Ω) := {q ∈ L2

p :
∫

Ω
q = 0}. The

space of weakly divergent free functions, V := {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q}, and the dual space

of V will be denoted by V ′.

For TH elements, (Xh, Qh) is made of ((Pk)d, Pk−1), k ≥ 2 velocity/pressure elements.

Thus we have, for a given regular mesh Th, and homogenous Dirichlet boundary conditions,

Xh :=
{
vh : vh|e ∈ Pk(e), ∀e ∈ Th, vh ∈ [C0(Ω)]d, vh|∂Ω = 0

}
,

Qh :=
{
qh : qh|e ∈ Pk−1(e), ∀e ∈ Th, qh ∈ C0(Ω), qh ∈ L2

0(Ω)
}
.

For periodic boundary conditions the spaces are defined by

Xh :=
{
vh : vh|e ∈ Pk(e), ∀e ∈ Th, vh ∈ [C0(Ω)]d, vh|∂Ω = periodic

}
,

Qh :=
{
qh : qh|e ∈ Pk−1(e), ∀e ∈ Th, qh ∈ C0(Ω), qh ∈ L2

p(Ω)
}
.

In addition to the TH approximation spaces we define the SV velocity and pressure approx-

imation spaces. Let Th denote the mesh that ensures the SV pair is LBB stable, for example:

(A1) in 2d, k ≥ 4 and the mesh has no singular vertices [63],

(A2) in 3d, k ≥ 6 [77],

(A3) when k ≥ d and the mesh is a barycenter refinement of a regular mesh [76, 63], or

(A4) on Powell-Sabin meshes when k = 1 and d = 2 or when k = 2 and d = 3 [78].

We note that the SV velocity approximation space is the same as the TH velocity approximation

space and define the SV pressure space to be

QSVh := {qh ∈ L2
0(Ω) : qh|T ∈ Pk−1∀T ∈ Th}, or

QSVh := {qh ∈ L2
p(Ω) : qh|T ∈ Pk−1∀T ∈ Th}.

Since it is discontinuous, the dimension of the pressure space for SV elements is significantly larger

than for TH elements. This creates a greater total number of degrees of freedom needed for linear

solves using SV elements. Although the velocity spaces of the TH and SV elements are the same,

the spaces of discretely divergence free subspaces are different, and thus we denote the TH and SV
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discretely divergence free subspaces respectively as

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh},

V SVh := {vh ∈ XSV
h : (∇ · vh, qh) = 0 ∀qh ∈ QSVh }.

The SV elements are very attractive from the mass conservation point of view since their discrete

velocity space and discrete pressure space fulfill an important property, namely

∇ · XSV
h ⊂ QSVh .

Thus, using SV elements, weak mass conservation via (∇ · vh, qh) = 0, ∀qh ∈ QSVh implies strong

(pointwise) mass conservation, since ||∇ · vh|| = 0 by choosing qh = ∇ · vh. Such a result, or choice

of test function, is not possible with many element choices, including TH.

Chapter 3 and Chapter 4 make use the curl of the velocity, which is known as vorticity.

These chapters prescribe homogenous Dirichlet boundary conditions for the velocity, and so we do

not define a discrete vorticity space in the context of periodic boundary conditions. However, we use

a more general space for the discrete vorticity space when velocity is prescribed no slip boundary

conditions. Even though the velocity satisfies homogeneous Dirichlet boundary conditions, it is

believed to be inappropriate to enforce homogeneous Dirichlet boundary conditions for the vorticity.

We choose the boundary condition to be a no-slip boundary condition along the boundary, and

hence we define the space

Wh :=
{
vh : vh ∈ [C0(Ω)]3,∀e∈Th(vh)|e ∈ Pk(e), vh × n|∂Ω = 0

}
⊃ Xh .

We use tn := n∆t, and for both continuous and discrete functions of time

vn+ 1
2 :=

v((n+ 1)∆t) + v(n∆t)

2
.
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For the convergence studies, we make use of the following approximation properties:

inf
vh∈V SVh

‖u− vh‖ ≤ C(β)

inf
v∈ XSVh

‖u− v‖ ≤ Chk+1|u|k+1, u ∈ (Hk+1(Ω))d,

inf
v∈ XSVh

‖u− v‖1 ≤ Chk|u|k+1, u ∈ (Hk+1(Ω))d,

inf
r∈QSVh

‖p− r‖ ≤ Chs+1|p|s+1, p ∈ Hs+1(Ω)

For the analysis in this thesis we use three trilinear operators which are defined below along

with their respective bounds. The first trilinear operator is used when the nonlinear term in the

NSE is in rotational form and is given by

Definition 2.0.1. Define b1 : X × X × X → R , by

b1(u, v, w) := ((∇× u)× v, w).

The following bounds will be used often in our analysis

Lemma 2.0.1. For u, v, w ∈ X, or L∞(Ω) and ∇×u ∈ L∞(Ω), when indicated, the trilinear term

b(u, v, w) satisfies

|b1(u, v, w)| ≤ ‖∇ × u‖‖v‖∞‖w‖, (2.0.1)

|b1(u, v, w)| ≤ ‖∇ × u‖∞‖v‖‖w‖ , (2.0.2)

|b1(u, v, w)| ≤ C0(Ω)‖∇ × u‖‖∇v‖‖∇w‖ , (2.0.3)

|b1(u, v, w)| ≤ C0(Ω)‖v‖1/2‖∇v‖1/2‖∇ × u‖‖∇w‖ , (2.0.4)

and if u, v, w ∈ V and w ∈ (H2(Ω))d, then

|b1(u, v, w)| ≤ C‖w‖2‖∇v‖‖u‖ (2.0.5)

Proof. The first two estimates follow immediately from the definition of b1. The proof of the next

two bounds are easily adapted from the usual bounds of the nonlinearity in non-rotational form.

The last bound takes more work. Begin with a simple vector identity and that the curl is self adjoint
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with u, v, w ∈ X:

|((∇× u)× v, w)| = |(w × v,∇× u)| = |(∇× (w × v), u)| (2.0.6)

Continuing with another vector identity for the curl of the cross product of two vectors,

∇× (w × v) = v · ∇w − w · ∇v + (∇ · v)w − (∇ · w)v, (2.0.7)

which reduces, since v, w ∈ V , to

∇× (w × v) = v · ∇w − w · ∇v. (2.0.8)

Combining this with (2.0.6), we have by Holder and Poincare’s inequalities,

|((∇× u)× v, w)| ≤ |(v · ∇w, u)|+ |(w · ∇v, u)|

≤ C‖w‖2‖∇v‖‖u‖. (2.0.9)

The second trilinear operator is the skew-symmetric operator b∗ : X×X×X → R is defined

by

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

The following bounds on b∗ will be used.

Lemma 2.0.2. There exists a constant Cs dependent only on the size of Ω such that ∀u, v, w ∈ Xh,

b∗(u, v, w) ≤ Cs‖∇u‖‖∇v‖‖∇w‖

b∗(u, v, w) ≤ Cs‖∇u‖‖∇v‖‖w‖1/2‖∇w‖1/2

Proof. This well known lemma is proven, e.g., in [37].

We define the final trilinear operator,b3(·, ·, ·), which will be used in Chapter 7.

Definition 2.0.2. Define the trilinear operator b3 : L1(Ω)×W 1
1 (Ω)× L1(Ω)→ R as

b3(u, v, w) = (u · ∇v, w),
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whenever the integral exists finitely.

Lemma 2.0.3. Let n denote the dimension of Ω. Then the form b3(·, ·, ·) is trilinear continuous on

Hm1(Ω)×Hm2+1(Ω)×Hm3(Ω) where mi ≥ 0 ∀i and

m1 +m2 +m3 ≥ n
2 if mi 6= n

2 , or

m1 +m2 +m3 >
n
2 if mi = n

2 for some i.

Proof. This operator has been studied extensively and is well known in the theory of the NSE. The

interested reader is referred to [70].

Corollary 2.0.1. The following inequalities will be utilized throughout Chapter 7

1. For every u, v, w ∈ H1
p (Ω)

b3(u, v, w) ≤ C‖u‖1‖v‖1‖w‖1. (2.0.10)

2. For all u, v, w ∈ H1
p (Ω)

b3(u, v, w) = −b3(u,w, v), (2.0.11)

which implies that

b3(u, v, v) = 0. (2.0.12)

3. For all u ∈ H1
p (Ω), v ∈ H2

p (Ω) and w ∈ H0
p (Ω),

b3(u, v, w) ≤ ‖u‖1‖v‖2‖w‖. (2.0.13)

Proof. These are well known identities follow immediately from Lemma 2.0.3.

The following two lemmas are also employed in the studies of the finite element analysis.

Lemma 2.0.4. Assume u ∈ C0(tn, tn+1;L2(Ω)). If u is twice differentiable in time and utt ∈

L2((tn, tn+1)× Ω) then

‖un+1/2 − u(tn+1/2)‖2 ≤ 1

48
(∆t)3

∫ tn+1

tn

‖utt‖2 dt . (2.0.14)
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If ut ∈ C0(tn, tn+1;L2(Ω)) and uttt ∈ L2((tn, tn+1)× Ω) then

‖un+1 − un
∆t

− ut(tn+1/2)‖2 ≤ 1

1280
(∆t)3

∫ tn+1

tn

‖uttt‖2 dt and (2.0.15)

if ∇u ∈ C0(tn, tn+1;L2(Ω)) and ∇utt ∈ L2((tn, tn+1)× Ω) then

‖∇(un+1/2 − u(tn+1/2))‖2 ≤ (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt . (2.0.16)

The proof of Lemma 2.0.4 is based on the Taylor expansion with remainder. It is more of

technical nature and therefore omitted herein.

The analysis in this thesis uses two discrete Gronwall inequalities, recalled from [37], for

example, and a continuous Gronwall inequality. These are given below.

Lemma 2.0.5 (Discrete Gronwall Lemma (version 1)). Let ∆t, H, and an, bn, cn, dn (for integers

n ≥ 0) be finite nonnegative numbers such that

al + ∆t

l∑
n=0

bn ≤ ∆t

l−1∑
n=0

dnan + ∆t

l∑
n=0

cn +H for l ≥ 1. (2.0.17)

Then for ∆t > 0

al + ∆t

l∑
n=0

bn ≤ exp

(
∆t

l−1∑
n=0

dn

)(
∆t

l∑
n=0

cn +H

)
for l ≥ 1. (2.0.18)

Lemma 2.0.6 (Discrete Gronwall Lemma (version2)). Let ∆t, H, and an, bn, cn, dn (for integers

n ≥ 0) be finite nonnegative numbers such that

al + ∆t

l∑
n=0

bn ≤ ∆t

l∑
n=0

dnan + ∆t

l∑
n=0

cn +H for l ≥ 0. (2.0.19)

Suppose that ∆tdn < 1 ∀n. Then, for ∆t > 0

al + ∆t

l∑
n=0

bn ≤ exp

(
∆t

l∑
n=0

dn
1−∆tdn

)(
∆t

l∑
n=0

cn +H

)
for l ≥ 0. (2.0.20)

Lemma 2.0.7. (Continuous Gronwall inequality) Let f(x) and B(x) be functions which are piece-

wise continuous on the interval [a, b] and let K be a nonnegative scalar. Further, assume that f(x)
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and B(x) satisfy ∀t ∈ [a, b]

∫ t

a

g(s)ds+ f(t) ≤ K +

∫ t

a

B(s)f(s)ds. (2.0.21)

Then, ∀t ∈ [a, b] we have the following upper bound

∫ s

a

g(s)ds+ f(t) ≤ Ke
∫ t
a
B(s)ds. (2.0.22)

Lemma 2.0.8. (Aubin-Lions Lemma). Let X0, X, and X1 be Banach spaces such that X0 ⊂ X ⊂

X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded in X1.

Additionally, assume that X0 and X1 are reflexive spaces. For 1 < p, q <∞, let

W := {u ∈ Lp([0, T ];X0)|∂tu ∈ Lq([0, T ];X1)}.

Then the embedding of W into Lp([0, T ];X) is also compact.

Define Rh to be the orthogonal complement of V SVh in Vh with respect to the (∇·,∇·) inner

product. That is

Vh =: V SVh ⊕Rh,

Lemma 2.0.9. There exists a constant M <∞ satisfying ∀rh ∈ Rh,

‖∇rh‖ ≤M‖∇ · rh‖.

Proof. Define

M := max
vh∈Rh,‖∇vh‖=1

1

‖∇ · vh‖

Observe M <∞ since vh ∈ Rh, ‖∇ · vh‖ > 0, and the max is taken over a compact set of Rn. For

any rh ∈ Rh, there is an eh ∈ Rh satisfying ‖∇eh‖ = 1 and

rh = ‖∇rh‖eh.

Taking divergence of both sides, then L2 norms gives

‖∇ · rh‖ = ‖∇rh‖‖∇ · eh‖.

Rearranging and using the definition of M finishes the proof.
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Since we study discretizations of a fluid model, we must deal with discrete differential filters.

Continuous differential filters were introduced into turbulence modeling by Germano [24] and used

for various models and regularizations [13, 5, 28]. They can arise, for example, as approximations

to Gaussian filters of high qualitative and quantitative accuracy [21].

Definition 2.0.3 (Continuous Helmholtz-filter). For v ∈ (L2(Ω))d and α > 0 fixed, denote the

filtering operation on v by v, where v is the unique solution in X to

−α2∆v + v = v. (2.0.23)

We denote by F := (−α2∆ + I)−1, so Fv = v. We define next the discrete differential filter

following Manica and Kaya-Merdan [53], but also enforcing incompressibility:

Definition 2.0.4 (Discrete Helmholtz filter). Given v ∈ (L2(Ω))d, for a given filtering radius α > 0,

vh = Fhv is the unique solution in XSV
h of: Find (vh, λh) ∈ ( XSV

h , QSVh ) satisfying

α2(∇vh,∇χh) + (vh, χh)− (λh,∇ · χh) + (∇ · vh, rh) = (v, χh) ∀(χh, rh) ∈ ( XSV
h , QSVh ). (2.0.24)

Remark 2.0.1. The definition of the discrete Helmholtz filter is defined using SV elements. The

definition of the discrete filter using TH elements is a straight forward extension and so we omit it.

We next introduce the following lemma which bounds the solution to the filtered problem

by data.

Lemma 2.0.10. For v ∈ X, we have the following bounds

‖vh‖ ≤ ‖v‖ , ‖∇vh‖ ≤ ‖∇v‖ and ‖∇ × vh‖ ≤ ‖∇v‖. (2.0.25)

Proof. The proof can be found in [44].

We now define the van Cittert approximate deconvolution operators.

Definition 2.0.5. The continuous and discrete van Cittert deconvolution operators DN and Dh
N

are

DNv :=

N∑
n=0

(I − F )nv , Dh
Nv :=

N∑
n=0

(Πh − Fh)nv . (2.0.26)

where Πh denotes the L2 projection Πh : (L2(Ω))d → Xh.
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For order of deconvolution N = 0, 1, 2, 3 and v ∈ Xh we have

Dh
0 v = v,

Dh
1 v = 2v − vh,

Dh
2 v = 3v − 3vh + vh

h
,

Dh
3 v = 4v − 6vh + 4vh

h
− vh

h
h

.

DN was shown to be an O(α2N+2) approximate inverse to the filter operator F in Lemma 2.1 of

[16]. The proof is an algebraic identity and holds in the discrete case as well, giving the following.

Lemma 2.0.11. DN and Dh
N are bounded, self-adjoint positive operators. For v ∈ (L2(Ω))d,

v = DNv + (−1)(N+1)α2N+2∆N+1F (N+1)v

and

v = Dh
Nv

h + (−1)(N+1)α2N+2∆N+1
h F

(N+1)
h v

Lemma 2.0.12. For v ∈ X, we have the following bounds

‖∇ ×Dh
Nv

h‖ ≤ C(N)‖∇v‖. (2.0.27)

Proof. The proof follows from an inductive argument based on the definition of the deconvolution

operator Dh
N and Lemma 2.0.10.

Lemma 2.0.13. For smooth φ the discrete approximate deconvolution operator satisfies

‖v −Dh
Nv

h‖ ≤ Cα2N+2‖∆N+1FN+1v‖ + C(αhk + hk+1)(

N+1∑
n=1

| Fnv |k+1 ) . (2.0.28)

This is proven in [43].

The dependence of the |Fn(v)|k+1 terms in (2.0.28) upon the filter radius α, for a general

smooth function φ, is not fully understood for deconvolution order N ≥ 2 (i.e. for n ≥ 2)[17, 36]. In

the case of v periodic |Fn(v)|k+1 is independent of α. Also, for v satisfying homogeneous Dirichlet

boundary conditions, with the additional property that ∆jv = 0 on ∂Ω for 0 ≤ j ≤
[
k+1

2

]
− 1, the

|Fn(v)|k+1 are independent of α. Our analysis of the method is for general N , and thus for N ≥ 2,

we make this assumption of independence. However, our computations are for N = 1, and our

experience has shown there is typically little or no gain for larger N with polynomials approximating
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velocities with degree three or less. For elements with higher order polynomials, we would expect a

difference.

The Leray-deconvolution model first filters the velocity and then approximately unfilters it.

Hence we are interested in properties of the operator (DN ◦ F ), which is denoted by HN by Layton

and Lewandowski [41], and we continue this notation.

Definition 2.0.6. The operator HN : H0
p (Ω)→ H0

p (Ω) is defined by

HNw := (DN ◦ F )w.

Next we list some properties of the operator HN proved in [41], which will be used in our

analysis.

Lemma 2.0.14. Let s ∈ R be nonnegative. Then

1. For s ≥ 0 HN maps Hs
p into itself compactly.

2. If w ∈ Hs
p(Ω) then HN (w) ∈ Hs+2

p (Ω). That is ‖HNw‖s+2 ≤ C(α,N)‖w‖s.

3. HN commutes with the gradient operator, i.e. HN ◦ ∇(·) = ∇ ◦HN (·).

4. If w ∈ Hs
p(Ω) then HN (w)→ w strongly in Hs

p(Ω) when α is fixed and N →∞.

Remark 2.0.2. The constant, C(α,N), in 2 can go to infinity as α→ 0 or as N →∞.
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Chapter 3

Stable Computing with an

Enhanced Physics Based Scheme

for the 3D Navier-Stokes Equations

In this chapter we extend the enhanced-physics based helicity scheme of [64] to homogeneous

Dirichlet boundary conditions for the velocity with appropriate stabilizations. We propose three

numerical schemes that are extensions of the helicity conserving scheme studied by Rebholz. The

first scheme we propose is a direct extension of the enhanced physics based scheme to homogenous

Dirichlet boundary conditions (i.e. we do not stabilize the scheme). The other two schemes are

stabilized. The first scheme is stabilized using the usual grad-div stabilization [62], and the second

is stabilized using a modified grad-div stabilization term.

The usual grad-div stabilization term in our numerical scheme is derived by adding the

identically 0 term −γ∇(∇ · u) to the continuous NSE. In the numerical scheme the term penalizes

for lack of discrete mass conservation, and nullifies the effect of the pressure error on the velocity

error [42, 52, 62]. The model we study uses the rotational form of the NSE nonlinearity and so

the pressure used is the more complex Bernoulli pressure, which can adversely effect the velocity

error. Tthe modified grad-div stabilization term is derived similarly by adding the identically 0 term

−γ∇(∇ · ut) to the continuous NSE. The modified grad-div stabilization also penalizes for lack of

discrete mass conservation, and nullifies the effect of the pressure error on the velocity error.

The use of stabilization is not without potential drawbacks. Adding the stabilization terms

to the numerical scheme changes the energy balance, which is not ideal but often advantageous
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in practice. We show that the modified grad-div stabilization terms alters the energy balance less

than the typical grad-div stabilization term, and provide a numerical experiments that shows the

improvement when the stabilization terms are used.

3.1 Algorithms

Algorithm 3.1.1 (Enhanced-physics based helicity schemes for homogeneous Dirichlet boundary

conditions). Given a time step ∆t > 0, finite end time T := M∆t, and initial velocity u0
h ∈ Vh, find

w0
h ∈Wh and λ0

h ∈ Qh satisfying ∀(χh, rh) ∈ (Wh, Qh)

(w0
h, χh) + (λ0

h,∇ · χh) = (∇× u0
h, χh), (3.1.1)

(∇ · w0
h, rh) = 0. (3.1.2)

Then for n = 0, 2, ...,M − 1, find (un+1
h , wn+1

h , pn+1
h , λn+1

h ) ∈ (Xh,Wh, Qh, Qh) satisfying

∀(vh, χh, qh, rh) ∈ (Xh,Wh, Qh, Qh)

(
un+1
h − unh

∆t
, vh) + STAB− (pn+1

h ,∇ · vh)

+(w
n+ 1

2

h × un+ 1
2

h , vh) + ν(∇un+ 1
2

h ,∇vh) = (f(tn+ 1
2 ), vh) (3.1.3)

(∇ · un+1
h , qh) = 0 (3.1.4)

(w
n+ 1

2

h , χh) + (λn+1
h ,∇ · χh) = (∇× un+ 1

2

h , χh) (3.1.5)

(∇ · wn+ 1
2

h , rh) = 0. (3.1.6)

where

STAB =


0 helicity scheme 1

γ(∇ · un+ 1
2

h ,∇ · vh) helicity scheme 2

γ
∆t (∇ · (u

n+1
h − unh),∇ · vh) helicity scheme 3

Remark 3.1.1. We have found it computationally advantageous to decouple the 4 equation system

(3.1.3)-(3.1.6) into a velocity-pressure system (3.1.3)-(3.1.4) and a projection system (3.1.5)-(3.1.6),

then solve (3.1.3)-(3.1.6) by iterating between the two sub-systems. This typically requires more it-

erations and linear solves to converge than solving the fully-coupled system using a Newton method.

However the linear solves are much easier in the decoupled system. Note also that for the decoupled

system the work required is only slightly more than a usual implicit Crank-Nicolson method (i.e. with-

out vorticity projection) since the extra work is (relatively inexpensive) projection solves. Moreover,
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for nonhomogeneous boundary conditions, this decoupling leads to a simplified boundary condition for

the vorticity: wh = Ih(∇× uh) on the boundary, where Ih is an appropriate interpolation operator.

3.2 Stability, conservation laws, and existence of solutions

In this section we prove fundamental mathematical and physical properties of the 3 helicity

schemes: unconditional stability, solution existence and conservation laws. We begin with stability.

3.2.1 Stability

Lemma 3.2.1. Solutions to Algorithm 3.1.1 are nonlinearly stable. That is, they satisfy:

helicity scheme 1:

∥∥uMh ∥∥2
+ ν∆t

M−1∑
n=0

∥∥∥∇un+ 1
2

h

∥∥∥2

≤ ∆t

ν

M−1∑
n=0

‖f‖2∗ +
∥∥u0

h

∥∥2
= C(data) . (3.2.1)

helicity scheme 2:

∥∥uMh ∥∥2
+ ∆t

M−1∑
n=0

(
2γ
∥∥∥∇ · un+ 1

2

h

∥∥∥2

+ ν
∥∥∥∇un+ 1

2

h

∥∥∥2
)
≤ ∆t

ν

M−1∑
n=0

‖f‖2∗ +
∥∥u0

h

∥∥2
= C(data) . (3.2.2)

helicity scheme 3:

∥∥uMh ∥∥2
+ γ

∥∥∇ · uMh ∥∥2
+ ν∆t

M−1∑
n=0

∥∥∥∇un+ 1
2

h

∥∥∥2

≤ ∆t

ν

M−1∑
n=0

‖f‖2∗ +
∥∥u0

h

∥∥2
+ γ

∥∥∇ · u0
h

∥∥ = C(data) . (3.2.3)

helicity schemes 1,2,3:

∆t

M−1∑
n=0

∥∥∥wn+ 1
2

h

∥∥∥2

≤ ∆t

M−1∑
n=0

∥∥∥∇un+ 1
2

h

∥∥∥2

= C(data) . (3.2.4)

helicity schemes 1,2,3:

∆t

M∑
n=1

(
‖pnh‖

2
+ ‖λnh‖

2
)
≤ C(data) . (3.2.5)

C(data) is a constant dependent on T, ν, γ, f, u0
h and Ω.

Proof. To prove the bounds on velocity for each of the helicity schemes, choose vh = u
n+ 1

2

h in (3.1.3).

The nonlinear and pressure terms are then zero. The triangle inequality and summing over time

steps then completes the proofs of (3.2.1),(3.2.2),(3.2.3).
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To prove (3.2.4) choose χh = w
n+ 1

2

h in (3.1.5) and rh = λn+1
h in (3.1.6). After combining

the equations we obtain

∥∥∥wn+ 1
2

h

∥∥∥2

= (∇× un+ 1
2

h , w
n+ 1

2

h ) ≤
∥∥∥∇× un+ 1

2

h

∥∥∥∥∥∥wn+ 1
2

h

∥∥∥
≤ 1

2

∥∥∥∇× un+ 1
2

h

∥∥∥2

+
1

2

∥∥∥wn+ 1
2

h

∥∥∥2

≤
∥∥∥∇un+ 1

2

h

∥∥∥2

+
1

2

∥∥∥wn+ 1
2

h

∥∥∥2

.

Rearranging, and summing over time steps we obtain (3.2.4).

To obtain the stated bound for λnh, we begin with the inf-sup condition satisfied by Xh (⊂

Wh) and Qh and use (3.1.5) to obtain

‖λnh‖ ≤
1

β
sup

χh∈Xh

(λnh,∇ · χh)

‖χh‖X
≤ 1

β
sup

χh∈Xh

(∇× un−
1
2

h , χh)− (w
n− 1

2

h , χh)

‖χh‖X

≤ 1

β

(
‖∇ × un−

1
2

h ‖+ ‖wn−
1
2

h ‖
)
≤ 2

β

(
‖∇un−

1
2

h ‖+ ‖wn−
1
2

h ‖
)
.

Using the bounds for ∇un+ 1
2

h (see (3.2.1)-(3.2.3)) and w
n+ 1

2

h (see (3.2.4)) we obtain the bound for

λnh. The bound for the pressure is established in an analogous manner.

3.2.2 Existence

Lemma 3.2.2. Solutions exist to each of the three helicity schemes presented in Algorithm 3.1.1.

Proof. For each of the helicity schemes, this is a straight-forward extension of the existence proof

given for the periodic case in [64]. The result is a consequence of the Leray-Schauder fixed point

theorem and the stability bounds of Lemma 3.2.1.

We now study the conservation laws for energy and helicity in the helicity schemes. It

is shown in [64] that, when restricted to the periodic case, the non-stabilized helicity scheme of

Algorithm 3.1.1 (helicity scheme 1) conserves energy and helicity. In the case of homogeneous

boundary conditions for velocity, this physically important feature for energy is still preserved.

However, as one might expect, the stabilization term in helicity schemes 2 and 3 alters the energy

balance. Lemma 3.2.3 shows these energy balances.

The energy balance of helicity scheme 1, the unstabilized helicity scheme, is analogous to

that for the continuous NSE. However, for helicity scheme 2, we see the effect of the stabilization on

the energy balance in the term γ∆t
∑M−1
n=0

∥∥∥∇ · un+ 1
2

h

∥∥∥2

on the left hand side of (3.2.7). For most

choices of elements, one may have that each term in this sum is small, but over a long time interval

this sum can grow to significantly (and non-physically) alter the balance. The energy balance for
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helicity scheme 3 differs from helicity scheme 1’s energy balance in the addition of only two small

terms, instead of a sum. Hence this indicates that the modified grad-div stabilization, for problems

over a long time interval, offers a more physically relevant energy balance than the usual grad-div

stabilization (helicity scheme 2).

3.2.3 Conservation Laws

Lemma 3.2.3. The helicity schemes of Algorithm 3.1.1 admit the following energy conservation

laws:

helicity scheme 1:

1

2

∥∥uMh ∥∥2
+ ν∆t

M−1∑
n=0

∥∥∥∇un+ 1
2

h

∥∥∥2

= ∆t
M−1∑
n=0

(f(tn+ 1
2 ), u

n+ 1
2

h ) +
1

2

∥∥u0
h

∥∥2
. (3.2.6)

helicity scheme 2:

1

2

∥∥uMh ∥∥2
+ ν∆t

M−1∑
n=0

∥∥∥∇un+ 1
2

h

∥∥∥2

+ γ∆t

M−1∑
n=0

∥∥∥∇ · un+ 1
2

h

∥∥∥2

= ∆t

M−1∑
n=0

(f(tn+ 1
2 ), u

n+ 1
2

h ) +
1

2

∥∥u0
h

∥∥2
.

(3.2.7)

helicity scheme 3:

1

2
(
∥∥uMh ∥∥2

+ γ
∥∥∇ · uMh ∥∥2

) + ν∆t

M−1∑
n=0

∥∥∥∇un+ 1
2

h

∥∥∥2

= ∆t

M−1∑
n=0

(f(tn+ 1
2 ), u

n+ 1
2

h )

+
1

2
(
∥∥u0

h

∥∥2
+ γ

∥∥∇ · u0
h

∥∥2
) . (3.2.8)

Proof. The proofs of these results follow from choosing vh = u
n+ 1

2

h in Algorithm 3.1.1 for each of the

helicity schemes. The key point is that the nonlinear term vanishes with this choice of test function,

and thus does not contribute to the energy balance equations.

We now consider the discrete helicity conservation in Algorithm 3.1.1. We begin with the

case of imposing Dirichlet boundary conditions on the projected vorticity, i.e. Wh = Xh. Although

this case is nonphysical, analysis of it is the first step in understanding more complex boundary

conditions.

In this case, the helicity schemes’ discrete nonlinearity preserves helicity, however the sta-
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bilization terms do not. We state the precise results in the next lemma. Denote the discrete helicity

at time level n by Hn
h := (unh,∇× unh). Note that from (3.1.4),(3.1.5), Hn

h := (unh, w
n
h).

Lemma 3.2.4. If Wh := Xh, the helicity schemes of Algorithm 3.1.1 admit the following helicity

conservation laws.

helicity scheme 1:

HM
h + 2ν∆t

M−1∑
n=0

(∇un+ 1
2

h ,∇wn+ 1
2

h ) = 2ν∆t

M−1∑
n=0

(f(tn+ 1
2 ),∇wn+ 1

2

h ) +H0
h . (3.2.9)

helicity scheme 2:

HM
h + 2ν∆t

M−1∑
n=0

(∇un+ 1
2

h ,∇wn+ 1
2

h ) + 2γ∆t

M−1∑
n=0

(∇ · un+ 1
2

h ,∇ · wn+ 1
2

h )

= 2∆t

M−1∑
n=0

(f(tn+ 1
2 ),∇wn+ 1

2

h ) +H0
h . (3.2.10)

helicity scheme 3:

HM
h + 2ν∆t

M−1∑
n=0

(∇un+ 1
2

h ,∇wn+ 1
2

h ) + 2γ

M−1∑
n=0

(∇ · (un+1
h − unh),∇ · wn+ 1

2

h )

= 2∆t

M−1∑
n=0

(f(tn+ 1
2 ),∇wn+ 1

2

h ) +H0
h . (3.2.11)

Proof. Choosing vh = w
n+ 1

2

h elimates the nonlinear term and the pressure term from (3.1.3) for each

of the 3 helicity schemes, and reduces the time difference term to

1

∆t
(un+1
h − unh, w

n+ 1
2

h ) =
1

∆t
(un+1
h − unh,∇× u

n+ 1
2

h )

=
1

2∆t

(
(un+1
h ,∇× un+1

h ) + (un+1
h ,∇× unh) − (unh,∇× un+1

h ) − (unh,∇× unh)
)

=
1

2∆t

(
Hn+1
h −Hn

h

)
, (3.2.12)

as, for v, w ∈ H1
0 (Ω), (v,∇× w) = (w,∇× v).

Using (3.2.12) helicity scheme 1 becomes

1

2∆t

(
Hn+1
h −Hn

h

)
+ ν(∇un+ 1

2

h ,∇wn+ 1
2

h ) = (f(tn+ 1
2 ), w

n+ 1
2

h ) (3.2.13)
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Multiplying by 2∆t and summing over time steps completes the proof of (3.2.9).

The proofs of (3.2.10) and (3.2.11) follow the same way, except they will contain their

respective stabilization terms.

Lemma 3.2.4 shows that if we impose Dirichlet boundary conditions on the vorticity, then

the nonlinearity is able to preserve helicity. Hence for helicity scheme 1, we see a helicity balance

analogous to that of the true physics. However, the stabilization terms do not preserve helicity, and

thus appear in the helicity balances for helicity schemes 2 and 3.

Interestingly, if the term γ(∇ · wn+1
h ,∇ · χh) is added to the left hand side of the vorticity

projection equation (3.1.5), one can show that helicity scheme 3 conserves both helicity and energy.

This results from the cancellation of the stabilization term in helicity scheme 3’s momentum equation

when vh is chosen to be w
n+ 1

2

h and χh is chosen as un+1
h and unh respectively. However, computations

using this additional term with helicity scheme 3 were inferior to those of helicity scheme 3 defined

above.

Similar conservation laws for helicity, even for helicity scheme 1, do not appear to hold for

the nonhomogeneous boundary condition for vorticity, i.e. Xh 6= Wh. Due to the definitions of these

spaces, extra terms arise in the balance that correspond to the difference between the projection of

the curl into discretely divergence-free subspaces of Wh and Xh. These extra terms will be small

except at strips along the boundary, but nonetheless global helicity conservation will fail to hold.

However, more typical helicity schemes, e.g. usual trapezoidal convective form or rotational form

[37], introduce nonphysical helicity over the entire domain and thus the helicity schemes of Algorithm

2.1 still provide a better treatment of helicity than such helicity schemes.

3.3 Convergence

Three numerical helicity schemes are described in Algorithm 2.1. We prove in detail conver-

gence of solutions of helicity scheme 3 to an NSE solution. Convergence results for helicity schemes

1 and 2 can be established in an analogous manner.

Let PVh : L2 → Vh denote the projection of L2 onto Vh, i.e. PVh(w) := sh where

(sh, vh) = (w, vh) ,∀vh ∈ Vh .

For simplicity in stating the a priori theorem we summarize here the regularity assumptions

for the solution u(x, t) to the NSE.
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u ∈ L2(0, T ;Hk+2(Ω)) ∩ L∞(0, T ;H1(Ω)), (3.3.1)

u(·, t) ∈ H1
0 (Ω), (3.3.2)

ut ∈ L2(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;Hk+1(Ω)), (3.3.3)

utt ∈ L2(0, T ;Hk+1(Ω)) , (3.3.4)

uttt ∈ L2(0, T ;L2(Ω)) (3.3.5)

(u× (∇× u))tt ∈ L2(0, T ;L2(Ω)) . (3.3.6)

Theorem 3.3.1. For u, p solutions of the NSE with p ∈ L2(0, T ;Hk(Ω)), u satisfying (3.3.1)-

(3.3.6), f ∈ L2(0, T ;X∗(Ω)), and u0 ∈ Vh, (unh, w
n
h) given by helicity scheme 3 of Algorithm 2.1 for

n = 1, ...,M and ∆t sufficiently small, we have that

∥∥u(T )− uMh
∥∥+

∥∥∇ · (u(T )− uMh )
∥∥+

(
ν∆t

M−1∑
n=0

∥∥∥∇(un+ 1
2 − un+ 1

2

h )
∥∥∥2
)1/2

≤

C(γ, T, ν−3, u)
(
hk‖u(T )‖k+1 + hk‖|u|‖2,k+1 + hk‖|p|‖2,k + hk‖|ut|‖2,k+1

+ hk‖|ut|‖∞,k+1 + hk‖|ut|‖∞,1 ‖|u|‖2,k+1 + (∆t)1/2 hk‖utt‖2,k+1 + (∆t)2 ‖uttt‖2,0

+ (∆t)2 ‖utt‖2,1 + (∆t)2 ‖(u× (∇× u))tt‖2,0 + hk+1‖|u|‖∞,1 ‖|∇ × u|‖2,k+1 .
)

(3.3.7)

Proof of Theorem. Since (u, p) solves the NSE, we have ∀vh ∈ Xh that

(ut(t
n+ 1

2 ), vh)− (u(tn+ 1
2 )× (∇× u(tn+ 1

2 )), vh)− (p(tn+ 1
2 ),∇ · vh)

+ ν(∇u(tn+ 1
2 ),∇vh) = (f(tn+ 1

2 ), vh). (3.3.8)

Adding (u
n+1−un

∆t , vh) and ν(∇un+ 1
2 ,∇vh) to both sides of (3.3.8) we obtain

1

∆t
(un+1 − un, vh) +

(
(∇× u(tn+ 1

2 )× u(tn+ 1
2 )), vh

)
− (p(tn+ 1

2 ),∇ · vh) + ν(∇un+ 1
2 ,∇vh)

= (f(tn+ 1
2 ), vh) +

(
un+1 − un

∆t
− ut(tn+ 1

2 ), vh

)
+ ν(∇un+ 1

2 −∇u(tn+ 1
2 ),∇vh). (3.3.9)

Next, subtracting (3.1.3) from (3.3.9), label en := un − unh, and adding the identically zero term
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γ
∆t (∇ · (

un+1−un
∆t ),∇ · vh) to the LHS gives

1

∆t
(en+1 − en, vh) + ν(∇en+ 1

2 ,∇vh) +
γ

∆t
(∇ · (en+1 − en,∇ · vh))

= −
(
∇× u(tn+ 1

2 )× u(tn+ 1
2 ), vh

)
+
(
w
n+ 1

2

h × un+ 1
2

h , vh

)
+
(
p(tn+ 1

2 )− pn+1
h ,∇ · vh

)
+

(
un+1 − un

∆t
− ut(tn+ 1

2 ), vh

)
+ ν

(
∇un+ 1

2 −∇u(tn+ 1
2 ),∇vh

)
. (3.3.10)

We split the error into two pieces Φh and η: en = un − unh = (un − Un) + (Un − unh) := ηn + Φnh,

where Un denotes the interpolant of un in Vh, yielding

1

∆t
(Φn+1

h − Φnh, vh) + ν(∇Φ
n+ 1

2

h ,∇vh) +
γ

∆t
(∇ · (Φn+1

h − Φnh),∇ · vh) = − 1

∆t
(ηn+1 − ηn, vh)

− ν(∇ηn+ 1
2 ,∇vh)− γ

∆t
(∇ · (ηn+1 − ηn),∇ · vh)−

(
(∇× u(tn+ 1

2 ))× u(tn+ 1
2 ), vh

)
+ (w

n+ 1
2

h × un+ 1
2

h , vh) + (p(tn+ 1
2 )− pn+1

h ,∇ · vh) +

(
un+1 − un

∆t
− ut(tn+ 1

2 ), vh

)
+ ν(∇un+ 1

2 −∇u(tn+ 1
2 ),∇vh). (3.3.11)

Choosing vh = Φ
n+ 1

2

h yields

1

2∆t

(∥∥Φn+1
h

∥∥2 − ‖Φnh‖
2
)

+ ν
∥∥∥∇Φ

n+ 1
2

h

∥∥∥2

+
γ

2∆t

(∥∥∇ · Φn+1
h

∥∥2 − ‖∇ · Φnh‖
2
)

= − 1

∆t
(ηn+1 − ηn,Φn+ 1

2

h ) − ν(∇ηn+ 1
2 ,∇Φ

n+ 1
2

h ) − γ

∆t

(
∇ · (ηn+1 − ηn),∇ · Φn+ 1

2

h

)
−
(
∇× u(tn+ 1

2 )× u(tn+ 1
2 ),Φ

n+ 1
2

h

)
+ (w

n+ 1
2

h × un+ 1
2

h ,Φ
n+ 1

2

h ) + (p(tn+ 1
2 )− pn+1

h ,∇ · Φn+ 1
2

h )

+

(
un+1 − un

∆t
− ut(tn+ 1

2 ),Φ
n+ 1

2

h

)
+ ν(∇un+ 1

2 −∇u(tn+ 1
2 ),∇Φ

n+ 1
2

h ). (3.3.12)

We have the following bounds for the terms on the RHS (see [18]).

−ν(∇ηn+ 1
2 ,∇Φ

n+ 1
2

h ) ≤ ν

12

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

+ 3ν
∥∥∥∇ηn+ 1

2

∥∥∥2

(3.3.13)
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1

∆t
(ηn+1 − ηn,Φn+ 1

2

h ) ≤ 1

2

∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥2

+
1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

=
1

2

∫
Ω

(
1

∆t

∫ tn+1

tn
ηt dt

)2

dΩ +
1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

≤ 1

2

∫
Ω

(
2|ηt(tn+1)|2 + 2

∫ tn+1

tn
|ηtt|2 dt

)
dΩ +

1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

=
∥∥ηt(tn+1)

∥∥2
+

∫ tn+1

tn
‖ηtt‖2 dt +

1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

. (3.3.14)

Similarly,

γ

∆t

(
∇ · (ηn+1 − ηn),∇ · Φn+ 1

2

h

)
≤ γ

∥∥∇ · ηt(tn+1)
∥∥2

+ γ

∫ tn+1

tn
‖∇ · ηtt‖2 dt +

γ

2

∥∥∥∇ · Φn+ 1
2

h

∥∥∥2

.

(3.3.15)

(
un+1 − un

∆t
− ut(tn+ 1

2 ),Φ
n+ 1

2

h

)
≤ 1

2

∥∥∥∥un+1 − un

∆t
− ut(tn+ 1

2 )

∥∥∥∥2

+
1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

=
(∆t)3

2560

∫ tn+1

tn
‖uttt‖2 dt +

1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

(3.3.16)

ν(∇un+ 1
2 −∇u(tn+ 1

2 ),∇Φ
n+ 1

2

h ) ≤ 3ν
∥∥∥∇un+ ν

12 −∇u(tn+ 1
2 )
∥∥∥2

+
ν2

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

(3.3.17)

=
ν(∆t)3

16

∫ tn+1

tn
‖∇utt‖2 dt +

ν

12

∥∥∥Φ
n+ 1

2

h

∥∥∥2

(3.3.18)

For the pressure term, since Φ
n+ 1

2

h ∈ Vh, for any qh ∈ Qh,

(p(tn+ 1
2 )− pn+1

h ,∇ · Φn+ 1
2

h ) = (p(tn+ 1
2 )− qh,∇ · Φ

n+ 1
2

h ), (3.3.19)

which implies

(p(tn+ 1
2 )− pn+1

h ,∇ · Φn+ 1
2

h ) ≤ 1

2γ
inf

qh∈Qh

∥∥∥p(tn+ 1
2 )− qh

∥∥∥2

+
γ

2

∥∥∥∇ · Φn+ 1
2

h

∥∥∥2

. (3.3.20)
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Utilizing (3.3.13)-(3.3.20) we now have

1

2∆t

(∥∥Φn+1
h

∥∥2 − ‖Φnh‖
2
)

+
γ

2∆t

(∥∥∇ · Φn+1
h

∥∥2 − ‖∇ · Φnh‖
2
)

+
5ν

6

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

≤ 3ν
∥∥∥∇ηn+ 1

2

∥∥∥2

+
γ

∆t

∥∥∇ · ηt(tn+1)
∥∥2

+
γ

∆t

∫ tn+1

tn
‖∇ · ηtt‖2 dt +

1

2γ
inf

qh∈Qh

∥∥∥p(tn+ 1
2 )− qh

∥∥∥2

+ C(1 + ν)∆t3

(∫ tn+1

tn
‖uttt‖2 dt +

∫ tn+1

tn
‖∇utt‖2 dt

)
+
ν2 + 1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

+ γ
∥∥∥∇ · Φn+ 1

2

h

∥∥∥2

+ (w
n+ 1

2

h × un+ 1
2

h ,Φ
n+ 1

2

h )−
(

(∇× u(tn+ 1
2 ))× u(tn+ 1

2 ),Φ
n+ 1

2

h

)
∥∥ηt(tn+1)

∥∥2
+

∫ tn+1

tn
‖ηtt‖2 dt . (3.3.21)

For the nonlinear terms we have

(w
n+ 1

2

h × un+ 1
2

h ,Φ
n+ 1

2

h )−
(

(∇× u(tn+ 1
2 ))× u(tn+ 1

2 ),Φ
n+ 1

2

h

)
+
(

(∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)
−
(

(∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)
=
(

(w
n+ 1

2

h −∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)
+
(
w
n+ 1

2

h × (u
n+ 1

2

h − un+ 1
2 ),Φ

n+ 1
2

h

)
+
(

(∇× un+ 1
2 )× un+ 1

2 − (∇× u(tn+ 1
2 ))× u(tn+ 1

2 ),Φ
n+ 1

2

h

)
=
(

(w
n+ 1

2

h −∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)
−
(
w
n+ 1

2

h × ηn+ 1
2 ,Φ

n+ 1
2

h

)
+
(

(∇× un+ 1
2 )× un+ 1

2 − (∇× u(tn+ 1
2 ))× u(tn+ 1

2 ),Φ
n+ 1

2

h

)
(3.3.22)

We bound the second to last and last terms in (3.3.22) by

(w
n+ 1

2

h × ηn+ 1
2 ,Φ

n+ 1
2

h ) ≤ C
∥∥∥wn+ 1

2

h

∥∥∥∥∥∥∇ηn+ 1
2

∥∥∥∥∥∥∇Φ
n+ 1

2

h

∥∥∥
≤ ν

12

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

+ 3ν−1
∥∥∥wn+ 1

2

h

∥∥∥2 ∥∥∥∇ηn+ 1
2

∥∥∥2

(3.3.23)

(u(tn+ 1
2 )× (∇× u(tn+ 1

2 ))− un+ 1
2 × (∇× un+ 1

2 ),Φ
n+ 1

2

h )

≤ ν

12

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

+ 3ν−1
∥∥∥u(tn+ 1

2 )× (∇× u(tn+ 1
2 ))− un+ 1

2 × (∇× un+ 1
2 )
∥∥∥2

≤ ν

12

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

+
3

48
ν−1(∆t)3

∫ tn+1

tn
‖(u× (∇× u))tt‖2 dt. (3.3.24)

For the first term in (3.3.22), we need a bound on
∥∥∥∇× un+ 1

2 − wn+ 1
2

h

∥∥∥. This is obtained by

restricting χh to Vh in (3.1.5) and then subtracting (∇×un+ 1
2 , χh) from both sides of (3.1.5), which
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gives us

(∇× un+ 1
2 − wn+ 1

2

h , χh) = (∇× (un+ 1
2 − un+ 1

2

h ), χh)

= (∇× ηn+ 1
2 , χh) + (∇× Φ

n+ 1
2

h , χh) .

By the definition of PVh ,

(PVh(∇× un+ 1
2 )− wn+ 1

2

h , χh) = (∇× un+ 1
2 − wn+ 1

2

h , χh)

= (∇× (un+ 1
2 − un+ 1

2

h ), χh)

= (∇× ηn+ 1
2 , χh) + (∇× Φ

n+ 1
2

h , χh)

Choosing χh = PVh(∇× un+ 1
2 )− wn+ 1

2

h we obtain

∥∥∥PVh(∇× un+ 1
2 )− wn+ 1

2

h

∥∥∥2

≤ 2

(∥∥∥∇ηn+ 1
2

∥∥∥2

+
∥∥∥∇Φ

n+ 1
2

h

∥∥∥2
)
. (3.3.25)

Now using (3.3.25) and, from Poincare’s inequality,
∥∥∥Φ

n+ 1
2

h

∥∥∥ ≤ C
∥∥∥∇Φ

n+ 1
2

h

∥∥∥ we obtain

(
(PVh(∇× un+ 1

2 )− wn+ 1
2

h )× un+ 1
2 ,Φ

n+ 1
2

h

)
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∥∥∥∥∥∥Φ
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∥∥∥∇un+ 1

2

∥∥∥4 ∥∥∥Φ
n+ 1

2

h

∥∥∥2

.

(3.3.26)

Also, we have that

(
(∇× un+ 1

2 − PVh(∇× un+ 1
2 ))× un+ 1

2 ,Φ
n+ 1

2

h

)
≤ C

∥∥∥∇× un+ 1
2 − PVh(∇× un+ 1

2 )
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∥∥∥∥∥∥∇Φ
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2

h

∥∥∥
≤ ν
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∥∥∥∇Φ
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2

h

∥∥∥2

+ C
∥∥∥∇un+ 1

2

∥∥∥2 ∥∥∥∇× un+ 1
2 − PVh(∇× un+ 1

2 )
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(3.3.27)

Combining (3.3.27) and (3.3.26) we obtain the required bound for
(

(w
n+ 1

2

h −∇× un+ 1
2 )× un+ 1

2 ,Φ
n+ 1

2

h

)
.

Noting that
∥∥∥∇ · Φn+ 1

2

h

∥∥∥2

≤ 1/2 (
∥∥∇ · Φn+1

h

∥∥2
+ ‖∇ · Φnh‖

2
), substituting the bounds derived in
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(3.3.23), (3.3.24), (3.3.26), and (3.3.27) into (3.3.21) yields

1

2∆t

(∥∥Φn+1
h

∥∥2 − ‖Φnh‖
2
)

+
γ

2∆t

(∥∥∇ · Φn+1
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∥∥∥∇Φ
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2
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+
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tn
‖ηtt‖2 dt

+ γ
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‖∇ · ηtt‖2 dt + C∆t3

(∫ tn+1

tn
‖uttt‖2 dt +

∫ tn+1

tn
‖∇utt‖2 dt

)

+ Cν−1(∆t)3
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(3.3.28)

Next multiply by 2∆t, sum over time steps, and use the Gronwall inequality Lemma ?? to yield
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γ

∫ tn+1

tn
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∥∥∥2 ∥∥∥∇× un+ 1
2 − PVh(∇× un+ 1
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(3.3.29)

Recall the approximation properties of Un ∈ Vh, qh ∈ Qh, and PVh [37]:

‖η(tn)‖s ≤ Chk+1−s ‖u(tn)‖k+1 , s = 0, 1, and

inf
qh∈Qh

‖p(tn)− qh‖ ≤ Chk ‖p(tn)‖k

‖wn − PVh(wn)‖ ≤ Chk+1 ‖wn‖k+1 .
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Estimate (3.3.29) then becomes

∥∥ΦMh
∥∥2

+ γ
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≤ C exp

(
2∆t
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γ +
ν2 + 4

2
+ Cν−3

∥∥∥∇un+ 1
2

∥∥∥4
)(

1

2γ
h2k‖|p|‖22,k

+ ν h2k‖|u|‖22,k+1 + h2k+2‖|ut|‖22,k+1 + γ h2k‖|ut|‖22,k+1

+ ν−1h2k‖|ut|‖2∞,1 ‖|u|‖22,k+1 + ∆t γ h2k‖utt‖22,k+1 + ∆t h2k+2‖utt‖22,k+1

+ (∆t)4 ‖uttt‖22,0 + (∆t)4 ‖∇utt‖22,0 + (∆t)4 ‖(u× (∇× u))tt‖22,0

+

(
ν∆t

M−1∑
n=0

∥∥∥wn+ 1
2

h

∥∥∥2
)
ν−2h2k‖|ut|‖2∞,k+1 + h2k+2‖|u|‖2∞,1 ‖|∇ × u|‖22,k+1

)
. (3.3.30)

Finally, using the stability estimate for ν∆t
∑M−1
n=0

∥∥∥wn+ 1
2

h

∥∥∥2

from (3.2.4), and an application

of the triangle inequality, we obtain (3.3.7).

Remark 3.3.1. As expected, if (Xh, Qh) is chosen to be the inf-sup stable pair (Pk, Pk−1), k ≥ 2,

then with the smoothness assumptions (3.3.1)-(3.3.6) and p ∈ L2(0, T ;Hk(Ω)) the H1 convergence

for the velocity is

‖|u− uh|‖2,1 ≤ C(∆t2 + hk) (3.3.31)

Remark 3.3.2. The significant computational improvement of helicity schemes 2 and 3 over helicity

scheme 1 is somewhat masked in the statement of the a priori error bound for the velocity (for

helicity scheme 3) given in (3.3.7). For helicity scheme 1 the pressure contribution to the bound is

C
ν ‖p− qh‖, whereas for helicity schemes 2 and 3 the pressure contribution is given by C ‖p− qh‖, see

(3.3.20). The presence of ν in the denominator for helicity scheme 1 suggests a superior numerical

performance of helicity schemes 2 and 3 if a large pressure error is present.

3.4 Numerical Experiments

This section presents two numerical experiments, the first to confirm convergence rates and

the second to compare the helicity schemes’ accuracies over a longer time interval, against each

other and a commonly used helicity scheme. For both experiments, we will compute approximations

to the Ethier-Steinman exact Navier-Stokes solution on [−1, 1]3 [19], although we choose different

parameters and viscosities for the two tests. We find in the first numerical experiment, computed
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Figure 3.1: The velocity solution to the Ethier-Steinman problem with a = 1.25, d = 1 at t = 0 on
the (−1, 1)3 domain. The complex flow structure is seen in the stream ribbons in the box and the
velocity streamlines and speed contours on the sides.

convergence rates from successive mesh and time-step refinements indeed match the predicted rates

from section 4. For the second experiment, the advantage of using the stabilized enhanced physics

based helicity scheme is demonstrated.

For chosen parameters a, d and viscosity ν, the exact Ethier-Steinman NSE solution is given

by

u1 = −a (eax sin(ay + dz) + eaz cos(ax+ dy)) e−νd
2t (3.4.1)

u2 = −a (eay sin(az + dx) + eax cos(ay + dz)) e−νd
2t (3.4.2)

u3 = −a (eaz sin(ax+ dy) + eay cos(az + dx)) e−νd
2t (3.4.3)

p = −a
2

2
(e2ax + e2ay + e2az + 2 sin(ax+ dy) cos(az + dx)ea(y+z)

+2 sin(ay + dz) cos(ax+ dy)ea(z+x)

+2 sin(az + dx) cos(ay + dz)ea(x+y))e−2νd2t (3.4.4)

We give the pressure in its usual form, although our helicity scheme approximates instead the

Bernoulli pressure P = p + 1
2 |u|

2
. This problem was developed as a 3d analogue to the Taylor

vortex problem, for the purpose of benchmarking. Although unlikely to be physically realized, it

is a good test problem because it is not only an exact NSE solution, but also it has non-trivial

helicity which implies the existence of complex structure [54] in the velocity field. The t = 0

solution for a = 1.25 and d = 1 is illustrated in Figure 3.1. For both experiments below, we use
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u0 = (u1(0), u2(0), u3(0))T as the initial condition and enforce Dirichlet boundary conditions for

velocity to be the interpolant of u(t) on the boundary, while a do-nothing boundary condition is

used for the vorticity projection. All computations with helicity schemes 2 and 3 use stabilization

parameter γ = 1.

3.4.1 Numerical Test 1: Convergence rate verification

h ∆t
∥∥∣∣u− uS1

∣∣∥∥
2,1

rate
∥∥∣∣u− uS2

∣∣∥∥
2,1

rate
∥∥∣∣u− uS3

∣∣∥∥
2,1

rate

1 0.001 0.01560 - 0.01556 - 0.01579 -
0.5 0.0005 0.00390 2.00 0.00391 1.99 0.00395 2.00
0.25 0.00025 0.000979 1.99 0.000979 2.00 0.000984 2.01
0.125 0.000125 0.000245 2.00 0.000245 2.00 0.000246 2.00

Table 3.1: The ‖|uNSE − uh|‖2,1 errors and convergence rates for each of the three helicity scheme
of algorithm 3.1.1.

To verify convergence rates predicted in section 4, we compute approximations to (3.4.1)-

(3.4.4) with parameters a = d = π/4, viscosity ν = 1, and end-time T = 0.001. Since (P2, P1)

elements are being used, we expect O(h2 + ∆t2) convergence of ‖|uNSE − uh|‖2,1 for each of the

three helicity schemes of Algorithm 3.1.1. Errors and rates in this norm are shown in table 3.1,

and we find they match those predicted by the theory. Note the finest mesh provides 112,454 total

degrees of freedom.

3.4.2 Numerical Test 2: Comparison of the helicity schemes

For our second test, we compute approximations to (3.4.1)-(3.4.4) with a = 1.25, d = 1,

kinematic viscosity ν = 0.002, end time T = 0.5, using all 3 helicity schemes from Algorithm 3.1.1.

We use 3,072 tetrahedral elements, which provides 41,472 velocity degrees of freedom, and 46,875

degrees of freedom for the projected vorticity since here there are degrees of freedom on the boundary.

It is important to note that due to the splitting of the projection equations from the NSE system in

the solver and since the projection equation is well-conditioned, the time spent for assembling and

solving the projection equations is negligible.

In addition to the 3 helicity schemes of Algorithm 3.1.1, for comparison, we also compute

approximations using the well-known convective form Crank-Nicolson (CCN) FEM for the Navier-

Stokes equations [37, 25, 29]. We run the simulations with time-step ∆t = 0.005. Results of the

simulations are shown in Figures 3.2 and 3.3, where the L2(Ω) error and the helicity error are

plotted against time. It is clear from the pictures that the enhanced physics based helicity scheme is
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Figure 3.2: The plot above shows L2 error of the velocity vs time for the four helicity schemes
of Test 2. We see in the plot that the stabilizations add accuracy to the enhanced-physics helicity
scheme, and that the altered grad-div stabilization gives slightly better results than the usual grad-
div stabilization. It can also be seen that the enhanced-physics helicity scheme is far more accurate
in this metric than the usual Crank-Nicolson helicity scheme.

superior to the usual Crank-Nicolson helicity scheme, and its advantage becomes more pronounced

with larger time. Also it is seen that the stabilizations of the enhanced-physics helicity scheme

improve accuracy.
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Figure 3.3: The plot above shows helicity error vs time for the four helicity schemes of Test 2. We
see in the plot that helicity is far more accurate in the enhanced-physics helicity scheme, and even
better with stabilizations, than the usual Crank-Nicolson helicity scheme.
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Chapter 4

Large scale NSE computations

without a pressure space

We study a finite element scheme for the 3d NSE that globally conserves energy and helicity

and, through the use of SV elements, enforces pointwise the solenoidal constraints for velocity and

vorticity. A complete numerical analysis is given, including proofs for conservation laws, uncondi-

tional stability and optimal convergence. We also show the method can be efficiently computed by

exploiting a connection between this method, its associated penalty method, and the method arising

from use of grad-div stabilized TH elements. Finally, we give numerical examples which verify the

theory and demonstrate the effectiveness of the scheme.

4.1 The Algorithm

Algorithm 4.1.1. Given a time step ∆t > 0, finite end time T := M∆t, and initial velocity

u0
h ∈ Vh, find w0

h ∈Wh and λ0
h ∈ Qh satisfying ∀(χh, rh) ∈ (Wh, Qh)

(w0
h, χh) + (λ0

h,∇ · χh) = (∇× u0
h, χh), (4.1.1)

(∇ · w0
h, rh) = 0. (4.1.2)
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Then for n = 01, , 2, ...,M − 1, find (un+1
h , wn+1

h , pn+1
h , λn+1

h ) ∈ (Xh,Wh, Qh, Qh) satisfying

∀(vh, χh, qh, rh) ∈ (Xh,Wh, Qh, Qh)

(
un+1
h − unh

∆t
, vh)− (Pn+1

h ,∇ · vh)

+(w
n+ 1

2

h × un+ 1
2

h , vh) + ν(∇un+ 1
2

h ,∇vh) = (f(tn+ 1
2 ), vh) (4.1.3)

(∇ · un+1
h , qh) = 0 (4.1.4)

(wn+1
h , χh) + (λn+1

h ,∇ · χh) = (∇× un+1
h , χh) (4.1.5)

(∇ · wn+ 1
2

h , rh) = 0. (4.1.6)

4.2 Numerical analysis of the scheme

In this section we provide a complete numerical analysis of the scheme. We prove uncondi-

tional stability, solution existence, conservation laws, and optimal convergence.

4.2.1 Stability and solution existence

Lemma 4.2.1. Solutions to Algorithm 4.1.1 are unconditionally stable. That is, they satisfy:

∥∥uMh ∥∥2
+ ν∆t

M−1∑
n=0

∥∥∥∇un+ 1
2

h

∥∥∥2

≤ ∆t

ν

M−1∑
n=0

∥∥∥f(tn+ 1
2 )
∥∥∥2

∗
+
∥∥u0

h

∥∥2
= C(data) . (4.2.1)

∆t

M−1∑
n=0

∥∥∥wn+ 1
2

h

∥∥∥2

≤ C̃∆t

M−1∑
n=0

∥∥∥∇un+ 1
2

h

∥∥∥2

= C(data) . (4.2.2)

∆t

M∑
n=1

(
‖Pnh ‖

2
+ ‖λnh‖

2
)
≤ C(data) . (4.2.3)

C(data) is a constant dependent on T, ν, γ, f, u0
h and Ω, but independent of h and ∆t.

Proof. To prove the bound on the velocity choose vh = u
n+ 1

2

h in (4.1.3). The nonlinear and pressure

terms are then zero. The triangle inequality, and summing over time steps then completes the proof

of (4.2.1).

To prove (4.2.2) choose χh = w
n+ 1

2

h in (4.1.5) and rh = λn+1
h in (4.1.6). After combining
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the equations we obtain

∥∥∥wn+ 1
2

h

∥∥∥2

= (∇× un+ 1
2

h , w
n+ 1

2

h ) ≤
∥∥∥∇× un+ 1

2

h

∥∥∥∥∥∥wn+ 1
2

h

∥∥∥
≤ 1

2

∥∥∥∇× un+ 1
2

h

∥∥∥2

+
1

2

∥∥∥wn+ 1
2

h

∥∥∥2

≤
∥∥∥∇un+ 1

2

h

∥∥∥2

+
1

2

∥∥∥wn+ 1
2

h

∥∥∥2

.

Rearranging, and summing over time steps we obtain (4.2.2).

To obtain the stated bound for λnh, we begin with the inf-sup condition satisfied by Xh (⊂

Wh) and Qh and use (4.1.5) to obtain

‖λnh‖ ≤
1

β
sup

χh∈Xh

(λnh,∇ · χh)

‖χh‖X
≤ 1

β
sup

χh∈Xh

(∇× un−
1
2

h , χh)− (w
n− 1

2

h , χh)

‖χh‖X

≤ 1

β

(
‖∇ × un−

1
2

h ‖+ ‖wn−
1
2

h ‖
)
≤ 2

β

(
‖∇un−

1
2

h ‖+ ‖wn−
1
2

h ‖
)
.

Using the bounds for ∇un+ 1
2

h in (4.2.1) and w
n+ 1

2

h in (4.2.2) we obtain the bound for λnh. The bound

for the pressure is established in an analogous manner.

We show existence for the equivalent nonlinear problem: Given, ν,∆t > 0, fn+ 1
2 ∈ V ′h, and

unh ∈ Vh, find (uh, wh) ∈ Vh × Vh satisfying

2

∆t
(uh, vh) + (uh × wh, vh) +

ν

2
(∇uh,∇vh)

+
ν

2
(wh,∇× vh) = (fn+ 1

2 , vh) ∀vh ∈ Vh, (4.2.4)

(wh −∇× uh, χh) = 0 ∀χh ∈ Vh. (4.2.5)

Restricting the test functions to Vh ensures equations (4.2.4)-(4.2.5) are equivalent to (??)-

(??). We now formulate (4.2.4)-(4.2.5) as a fixed point problem, y = F (y), and use the Leray-

Schauder fixed point theorem. We first prove several preliminary lemmas, followed by a theorem

which proves that a solution to (4.2.4)-(4.2.5) exists.

Lemma 4.2.2. For ν,∆t > 0, there exists a unique solution (uh, wh) to the following: Given g ∈ V ′h,

find (uh, wh) ∈ Vh × Vh satisfying

2

∆t
(uh, vh) +

ν

2
(∇uh,∇vh) +

ν

2
(wh,∇× vh) = (g, vh) ∀vh ∈ Vh, (4.2.6)

(wh −∇× uh, χh) = 0 ∀χh ∈ Vh. (4.2.7)
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Proof. We will prove uniqueness of solutions to (4.2.6)-(4.2.7) by showing only the trivial solutions

solves the homogeneous problem, which will also imply the existence of solutions to the finite-

dimensional problem. Since the space Vh includes only zero-mean functions, functions and operators

are uniquely solvable, and thus we need not consider the adjoint problem. Choose vh = uh in (4.2.6),

χh = wh in (4.2.7), and substitute (4.2.7) into (4.2.6). This gives

2

∆t
‖uh‖2 +

ν

2
‖∇uh‖2 +

ν

2
‖wh‖2 = 0,

which implies uh = wh = 0.

This lemma allows us to define a solution operator to (4.2.6)- (4.2.7).

Definition 4.2.1. We define the solution operator T : V ′h → (Vh × Vh) to be the solution operator

of (4.2.6)- (4.2.7): if g ∈ V ′h, then T (g) = (uh, wh) solves (4.2.6)- (4.2.7).

We have that T is well defined by the previous lemma, and we now prove it is bounded and

linear.

Lemma 4.2.3. The solution operator T is linear, bounded, and continuous.

Proof. The linearity of T follows from the fact that T is a solution operator to a linear problem. To

see that T is bounded (and thus continuous since it is linear), we let vh = uh, χh = wh in (4.2.6)-

(4.2.7), multiply (4.2.7) by ν
2 , and add the equations. This gives

2‖uh‖2

∆t
+
ν

4
‖∇uh‖2 +

ν

2
‖wh‖2 ≤

1

ν
‖g‖2V ′ . (4.2.8)

Then since uh, wh are finite-dimensional, ‖uh, wh‖Vh×Vh ≤ C‖g‖V ′ . Hence,

‖T‖ = sup
g∈V ′h

‖T (g)‖
‖g‖V ′h

= sup
g∈V ′h

‖uh, wh‖Vh×Vh
‖g‖V ′h

≤ C. (4.2.9)

We next define the operator N . The function F that will be used in the formulation of the

fixed point problem will be a composition of T and N .

Definition 4.2.2. We define the operator N on (Vh × Vh) by

N(uh, wh) := fn+ 1
2 +

2

∆t
unh + uh × wh. (4.2.10)
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We now prove properties for N necessary for use in Leray-Schauder.

Lemma 4.2.4. For the nonlinear operator N , we have that N : Vh × Vh → V ′h, N is bounded, and

N is continuous.

Proof. To show N maps as stated, we let (uh, wh) ∈ Vh × Vh and write

‖N(uh, wh)‖V ′h = sup
vh∈Vh

(N(uh, wh), vh)

‖vh‖1
.

From the definition of N , we have that
(fn+1

2 ,vh)+(2(∆t)−1unh ,vh)
‖vh‖1 ≤ ‖f‖V ′h + C1‖unh‖ ≤ C2, and that

(uh × wh, vh)

‖vh‖1
≤ ‖uh‖∞‖wh‖ ≤ C3 (4.2.11)

since uh and wh are given to be in Vh, and all norms are equivalent in finite dimension. Hence

‖N(uh, wh)‖V ′h < C, and so N maps as stated. Note we have also proven N is bounded.

The equivalence of norms in finite dimension is also key in showing that N is continuous, as

‖N(u,w)−N(uk, wk)‖V ′h ≤ ‖u× (w − wk)‖V ′h + ‖(u− uk)× wk‖V ′h

≤ ‖u‖∞‖w − wk‖+ ‖wk‖∞‖u− uk‖ (4.2.12)

and thus → 0 as ‖(u,w)− (uk, wk)‖ → 0.

We now define the operator F : (Vh × Vh)→ (Vh × Vh) to be the composition of T and N :

F (y) = T (N(Y )).

Lemma 4.2.5. F is well defined and compact, and a solution to y = F (y) solves (4.2.4)-(4.2.5).

Proof. F is well defined because N and T are. The fact that F is compact follows from the fact

that both N and T are continuous and bounded. It can easily be seen that a fixed point of F solves

(4.2.4)-(4.2.5) by expanding F .

We are now ready to prove existence to (4.2.4)-(4.2.5) .

Theorem 4.2.1. Let yλ = (uλ, wλ) ∈ Vh × Vh and consider the family of fixed point problems

yλ = λF (yλ), 0 ≤ λ ≤ 1. A solution yλ to any of these fixed point problems satisfies ‖yλ‖ < K,

independent of λ. Since F is compact, and fixed points of F solve (4.2.4)-(4.2.5), by the Leray-

Schauder theorem there exist solutions to (4.2.4)-(4.2.5) .
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Proof. All we have to show to prove this theorem is that solutions to yλ = λF (yλ) are bounded

independent of λ. Using the definition of F and the linearity of T we have that

yλ = λF (yλ) = λT (N(yλ)) = T (λN(yλ)) = T (λ(fn+ 1
2 +

2

∆t
unh + uλ × wλ), (4.2.13)

which implies that

2

∆t
(uλ, v)− λ(uλ × wλ, v) +

ν

2
(∇uλ,∇vh)

+
ν

2
(wλ,∇× vh) = (λfn+ 1

2 , vh) +
2λ

∆t
(unh, vh) ∀vh ∈ Vh,(4.2.14)

(wλ −∇× uλ, χh) = 0 ∀χh ∈ Vh. (4.2.15)

Multiply (4.2.15) by ν
2 , let χh = wλ in (4.2.15), vh = uλ in (4.2.14), and add the equations. Similarly

to the stability estimate, this gives

1

∆t
‖uλ‖2 +

ν

4
‖∇uλ‖2 +

ν

2
‖wλ‖2 ≤

λ2(
1

ν
‖fn+ 1

2 ‖2 +
1

∆t
‖unh‖2) ≤ (

1

ν
‖fn+ 1

2 ‖2 +
1

∆t
‖unh‖2) ≤ C, (4.2.16)

which is a bound independent of λ. Thus the theorem is proven.

4.2.2 Conservation laws for discrete solutions

In this section we study the discrete conservation laws of Algorithm 4.1.1. Specifically, we

show the incompressibility constraints are satisfied pointwise and that the scheme admits an energy

and helicity balance which is analogous to these balances for the continuous NSE.

Lemma 4.2.6. Assuming (Xh, Qh) = (Pk, P
disc
k−1 ) with k ≥ d and periodic boundary conditions, we

have the discrete velocity and vorticity are divergence free at every timestep, that is

‖∇ · un+1
h ‖ = 0, (4.2.17)

‖∇ · wn+1
h ‖ = 0. (4.2.18)

Proof. Note that the SV pair satisfies ∇ ·Xh ⊂ Qh and therefore we can choose qh = ∇ · un+ 1
2

h in

(4.1.5). This gives

‖∇ · un+ 1
2

h ‖2 = 0. (4.2.19)
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Identity (4.2.17) follows from taking the square root of both sides of (4.2.19).

To derive (4.2.18) note that the use of periodic boundary conditions guarantees that Wh ⊂

Xh and thus ∇·Wh ⊂ Qh. Now choosing rh = ∇·wn+ 1
2

h and proceeding as before gives (4.2.18).

We now study the energy and helicity conservation of the scheme. Denote the discrete

energy and helicity at time level n by Enh := 1
2‖u

n
h‖2 and Hn

h := (unh,∇ × unh) respectively. Notice

that from (4.1.4) and (4.1.5), Hn
h := (unh, w

n
h).

Lemma 4.2.7. Algorithm 4.1.1 admits the following energy and helicity conservation laws.

1

2
‖EMh ‖2 + ν∆t

M−1∑
n=0

‖∇un+ 1
2

h ‖2 = ∆t

M−1∑
n=0

(f(tn+ 1
2 ), u

n+ 1
2

h ) +
1

2

∥∥E0
h

∥∥2
. (4.2.20)

HM
h + 2∆tν

M−1∑
n=0

(∇un+ 1
2

h ,∇wn+ 1
2

h ) = H0
h + 2∆tν

M−1∑
n=0

(f(tn+ 1
2 ), u

n+ 1
2

h ) (4.2.21)

Proof. To prove (4.2.20) and (4.2.21) we choose vh = u
n+ 1

2

h and vh = w
n+ 1

2

h in (4.1.3). The key point

is that the nonlinear term vanishes with these choices of test functions, and thus does not contribute

to the energy and helicity balance equations.

4.2.3 Convergence

We now prove optimal convergence of solutions to Algorithm 4.1.1 to an NSE solution.

Let PVh : L2 → Vh denote the projection of L2 onto Vh, i.e. PVh(w) := sh where

(sh, vh) = (w, vh) ,∀vh ∈ Vh .

For simplicity in stating the a priori theorem we summarize here the regularity assumptions

for the solution u(x, t) to the NSE.

u ∈ L2(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;H1(Ω)), (4.2.22)

u(·, t) ∈ H1
0 (Ω), ∇× u ∈ L2(0, T ;Hk+1(Ω)) , (4.2.23)

ut ∈ L2(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;Hk+1(Ω)), (4.2.24)

utt ∈ L2(0, T ;Hk+1(Ω)) , (4.2.25)

uttt ∈ L2(0, T ;L2(Ω)) (4.2.26)

(u× (∇× u))tt ∈ L2(0, T ;L2(Ω)) . (4.2.27)
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Theorem 4.2.2. For u, p solutions of the NSE with p ∈ L2(0, T ;Hk(Ω)), u satisfying (4.2.22)-

(4.2.27), f ∈ L2(0, T ;X∗(Ω), and u0 ∈ Vh, (unh, w
n
h) given by Algorithm 4.1.1 for n = 1, ...,M and

∆t sufficiently small, we have that

∥∥u(T )− uMh
∥∥+

(
ν∆t

M−1∑
n=0

∥∥∥∇(un+ 1
2 − un+ 1

2

h )
∥∥∥2

+
∥∥∥∇× un+1/2 − wn+1/2

h

∥∥∥2
)1/2

≤

C(T, ν−3, u)
(
hk‖u(T )‖k+1 + hk‖|u|‖2,k+1 + hk‖|ut|‖2,k+1

+ hk‖|ut|‖∞,k+1 + hk‖|ut|‖∞,1 ‖|u|‖2,k+1 + (∆t)1/2 hk‖utt‖2,k+1 + (∆t)2 ‖uttt‖2,0

+ (∆t)2 ‖utt‖2,1 + (∆t)2 ‖(u× (∇× u))tt‖2,0 + hk+1‖|u|‖∞,1 ‖|∇ × u|‖2,k+1 .
)

(4.2.28)

Remark 4.2.1. This proof is similar to the convergence proof in Chapter 3. The fundamental

difference in the proofs is that now we are assuming the use of the SV element, which while maintaing

optimal approximation properties removes the adverse (often large) effect of the Bernoulli pressure

occurring when computing a scheme in rotational form of the NSE.

Proof of Theorem. Since (u, p) solves the NSE, we have ∀vh ∈ Xh that

(ut(t
n+ 1

2 ), vh) + (u(tn+ 1
2 )× (∇× u(tn+ 1

2 )), vh)− (p(tn+ 1
2 ),∇ · vh)

+ ν(∇u(tn+ 1
2 ),∇vh) = (f(tn+ 1

2 ), vh). (4.2.29)

Adding (u
n+1−un

∆t , vh) and ν(∇un+ 1
2 ,∇vh) to both sides of (4.2.29) we obtain

1

∆t
(un+1 − un, vh) +

(
(∇× u(tn+ 1

2 )× u(tn+ 1
2 )), vh

)
− (p(tn+ 1

2 ),∇ · vh)

+ ν(∇un+ 1
2 ,∇vh) = (f(tn+ 1

2 ), vh) +

(
un+1 − un

∆t
− ut(tn+ 1

2 ), vh

)
+ ν(∇un+ 1

2 −∇u(tn+ 1
2 ),∇vh). (4.2.30)

Next, subtracting (4.1.3) from (4.2.30) and labelling en := un − unh gives

1

∆t
(en+1 − en, vh) + ν(∇en+ 1

2 ,∇vh) =
(

(∇× u(tn+ 1
2 )× u(tn+ 1

2 )), vh

)
+
(
w
n+ 1

2

h × un+ 1
2

h , vh

)
+
(
p(tn+ 1

2 )− pn+1
h ,∇ · vh

)
+

(
un+1 − un

∆t
− ut(tn+ 1

2 ), vh

)
+ ν

(
∇un+ 1

2 −∇u(tn+ 1
2 ),∇vh

)
.

We split the error into two pieces Φh and η: en = un − unh = (un − Un) + (Un − unh) := ηn + Φnh,
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where Un denotes the interpolant of un in Vh, yielding

1

∆t
(Φn+1

h − Φnh, vh) + ν(∇Φ
n+ 1

2

h ,∇vh) = − 1

∆t
(ηn+1 − ηn, vh)− ν(∇ηn+ 1

2 ,∇vh)(
(∇× u(tn+ 1

2 )× u(tn+ 1
2 )), vh

)
+ (w

n+ 1
2

h × un+ 1
2

h , vh) + (p(tn+ 1
2 )− pn+1

h ,∇ · vh)

+

(
un+1 − un

∆t
− ut(tn+ 1

2 ), vh

)
+ ν(∇un+ 1

2 −∇u(tn+ 1
2 ),∇vh). (4.2.31)

Choosing vh = Φ
n+ 1

2

h vanishes the pressure term and yields

1

2∆t

(∥∥Φn+1
h

∥∥2 − ‖Φnh‖
2
)

+ ν
∥∥∥∇Φ

n+ 1
2

h

∥∥∥2

= − 1

∆t
(ηn+1 − ηn,Φn+ 1

2

h ) − ν(∇ηn+ 1
2 ,∇Φ

n+ 1
2

h )

−
(
∇× u(tn+ 1

2 )× u(tn+ 1
2 ),Φ

n+ 1
2

h

)
+ (w

n+ 1
2

h × un+ 1
2

h ,Φ
n+ 1

2

h )

+

(
un+1 − un

∆t
− ut(tn+ 1

2 ),Φ
n+ 1

2

h

)
+ ν(∇un+ 1

2 −∇u(tn+ 1
2 ),∇Φ

n+ 1
2

h ). (4.2.32)

We have the following bounds for the terms on the RHS (see [18]).

−ν(∇ηn+ 1
2 ,∇Φ

n+ 1
2

h ) ≤ ν

12

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

+ 3ν
∥∥∥∇ηn+ 1

2

∥∥∥2

(4.2.33)

1

∆t
(ηn+1 − ηn,Φn+ 1

2

h ) ≤ 1

2

∥∥∥∥ηn+1 − ηn

∆t

∥∥∥∥2

+
1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

=
1

2

∫
Ω

(
1

∆t

∫ tn+1

tn
ηt dt

)2

dΩ +
1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

≤ 1

2

∫
Ω

(
2|ηt(tn+1)|2 + 2

∫ tn+1

tn
|ηtt|2 dt

)
dΩ +

1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

=
∥∥ηt(tn+1)

∥∥2
+

∫ tn+1

tn
‖ηtt‖2 dt +

1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

. (4.2.34)

Similarly,

(
un+1 − un

∆t
− ut(tn+ 1

2 ),Φ
n+ 1

2

h

)
≤ 1

2

∥∥∥∥un+1 − un

∆t
− ut(tn+ 1

2 )

∥∥∥∥2

+
1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

=
(∆t)3

2560

∫ tn+1

tn
‖uttt‖2 dt +

1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

, (4.2.35)

ν(∇un+ 1
2 −∇u(tn+ 1

2 ),∇Φ
n+ 1

2

h ) ≤ 3ν
∥∥∥∇un+ ν

12 −∇u(tn+ 1
2 )
∥∥∥2

+
ν2

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

=
ν(∆t)3

16

∫ tn+1

tn
‖∇utt‖2 dt +

ν

12

∥∥∥Φ
n+ 1

2

h

∥∥∥2

. (4.2.36)
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Utilizing (4.2.33)-(4.2.36) we now have

1

2∆t

(∥∥Φn+1
h

∥∥2 − ‖Φnh‖
2
)

+
5ν

6

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

≤ 3ν
∥∥∥∇ηn+ 1

2

∥∥∥2

+

∫ tn+1

tn
‖ηtt‖2 dt

+ C(1 + ν)∆t3

(∫ tn+1

tn
‖uttt‖2 dt +

∫ tn+1

tn
‖∇utt‖2 dt

)
+
ν2 + 1

2

∥∥∥Φ
n+ 1

2

h

∥∥∥2

+
∥∥ηt(tn+1)

∥∥2
+ (w

n+ 1
2

h × un+ 1
2

h ,Φ
n+ 1

2

h )−
(

(∇× u(tn+ 1
2 ))× u(tn+ 1

2 ),Φ
n+ 1

2

h

)
. (4.2.37)

Treatment of the nonlinear terms is the same as in [9] which gives.

1

2∆t

(∥∥Φn+1
h

∥∥2 − ‖Φnh‖
2
)

+
ν

2

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

≤
(
ν2 + 4

2
+ Cν−3

∥∥∥∇un+ 1
2

∥∥∥4
)∥∥∥Φ

n+ 1
2

h

∥∥∥2

+ Cν
∥∥∥∇ηn+ 1

2

∥∥∥2

+
∥∥ηt(tn+1)

∥∥2
+ Cν−1

∥∥∥wn+ 1
2

h

∥∥∥2 ∥∥∥∇ηn+ 1
2

∥∥∥2

+ ν−1
∥∥∥∇un+ 1

2

∥∥∥2 ∥∥∥∇ηn+ 1
2

∥∥∥2

+

∫ tn+1

tn
‖ηtt‖2 dt+ C∆t3

(∫ tn+1

tn
‖uttt‖2 dt +

∫ tn+1

tn
‖∇utt‖2 dt

)

+ Cν−1(∆t)3

∫ tn+1

tn
‖(u× (∇× u))tt‖2 dt + C

∥∥∥∇un+ 1
2

∥∥∥2 ∥∥∥∇× un+ 1
2 − PVh(∇× un+ 1

2 )
∥∥∥2

(4.2.38)

Next multiplying by 2∆t, summing over time steps, and using Lemma ?? yields

∥∥ΦMh
∥∥2

+ ν∆t

M−1∑
n=0

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

≤ Cexp

(
2∆t

M−1∑
n=0

ν2 + 4

2
+ Cν−3

∥∥∥∇un+ 1
2

∥∥∥4
)(

∆t

M∑
n=0

ν ‖∇ηn‖2 + ∆t

M∑
n=1

‖ηt(tn)‖2

+ ∆t

M−1∑
n=0

ν−1
∥∥∥wn+ 1

2

h

∥∥∥2 ∥∥∥∇ηn+ 1
2

∥∥∥2

+ ∆t

M−1∑
n=0

ν−1
∥∥∥∇un+ 1

2

∥∥∥2 ∥∥∥∇ηn+ 1
2

∥∥∥2

+ ∆t

M−1∑
n=0

∫ tn+1

tn
‖ηtt‖2 dt+ (∆t)4 ‖uttt‖22,0 + (∆t)4 ‖∇utt‖22,0

+ (∆t)4 ‖(u× (∇× u))tt‖22,0 + ∆t

M−1∑
n=0

∥∥∥∇un+ 1
2

∥∥∥2 ∥∥∥∇× un+ 1
2 − PVh(∇× un+ 1

2 )
∥∥∥2
)

(4.2.39)

Recall the approximation properties of Un ∈ Vh, qh ∈ Qh, and PVh [37]

‖η(tn)‖s ≤ Chk+1−s ‖u(tn)‖k+1 , s = 0, 1, and

‖wn − PVh(wn)‖ ≤ Chk+1 ‖wn‖k+1 .
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Estimate (4.2.39) then becomes

∥∥ΦMh
∥∥2

+ ν∆t

M−1∑
n=0

∥∥∥∇Φ
n+ 1

2

h

∥∥∥2

≤ C exp

(
2∆t

M−1∑
n=0

ν2 + 4

2
+ Cν−3

∥∥∥∇un+ 1
2

∥∥∥4
)(

ν h2k‖|u|‖22,k+1

+ h2k+2‖|ut|‖22,k+1 + ν−1h2k‖|ut|‖2∞,1 ‖|u|‖22,k+1 + ∆t h2k+2‖utt‖22,k+1

+ (∆t)4 ‖uttt‖22,0 + (∆t)4 ‖∇utt‖22,0 + (∆t)4 ‖(u× (∇× u))tt‖22,0

+

(
ν∆t

M−1∑
n=0

∥∥∥wn+ 1
2

h

∥∥∥2
)
ν−2h2k‖|ut|‖2∞,k+1 + h2k+2‖|u|‖2∞,1 ‖|∇ × u|‖22,k+1 .

)
(4.2.40)

Finally, from the boundness estimate for ν∆t
∑M−1
n=0

∥∥∥wn+ 1
2

h

∥∥∥2

from (4.2.2), and an applica-

tion of the triangle inequality we obtain (4.2.28).

4.3 Improved efficiency through decoupling

Algorithm 4.1.1 can be twice decoupled to allow for more efficient solves of the nonlinear

system. First, the nonlinear system should be decoupled into velocity-pressure and vorticity pro-

jection pieces. Once this is done, one is left to solve several saddle point systems at each timestep.

Due to the use of SV elements, we are able to use the classical penalty method to obtain optimally

accurate solutions while eliminating the saddle point structure of the linear systems. The key point

here is that the pointwise div-free subspace of the velocity space is guaranteed to have optimal

approximation properties in the setting where SV elements are LBB stable [65]. We prove now a

connection between the (Pk, P
disc
k−1 ) SV solution and (Pk, Qh) element solutions, where Qh can be

chosen from {Pk−1, Pk−2, ..., P1, P0, {0}}, the last of which leads directly to the penalty method

for both the reduced velocity and vorticity systems.

Theorem 4.3.1. Let Qh be specified so that the (Pk, Qh) pair is LBB stable. Then on a fixed mesh,

the (Pk, Qh) velocity solutions to (4.1.1)-(4.1.6) converge to the SV solution with convergence order

γ−1 in the energy norm, as γ → ∞; that is, if uh is the TH velocity solution and u0
h is the SV

velocity solution, then

‖uh − u0
h‖l2(0,T :H1(Ω)) ≤

C

γ
(4.3.1)
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Remark 4.3.1. The pair (Pk, Qh) is LBB stable when Qh is chosen to be Pr (for 0 ≤ r < k). Of

particular interest is the case when Qh = {0} which is equivalent to a dual-penalty method, similar

to that of Temam’s in [69].

Proof. Let (un+1
h , wn+1

h , pn+1
h , ln+1

h ) and (u0,n+1
h , w0,n+1

h , p0,n+1
h , λ0,n+1

h ) denote the SV and (Pk, Qh)

solutions to (4.1.3)-(4.1.6) respectively. Additionally, denote the velocity and vorticity differences of

the solutions as rn+ 1
2 and sn+ 1

2 so that

rn+ 1
2 := u

n+ 1
2

h − u0,n+ 1
2

h , (4.3.2)

sn+ 1
2 := w

n+ 1
2

h − w0,n+ 1
2

h . (4.3.3)

Orthogonally decompose rn+ 1
2 =

?
rn+ 1

2 +rn+ 1
2 and sn+ 1

2 =
?
sn+ 1

2 +sn+ 1
2 so that rn+ 1

2 , sn+ 1
2 ∈ V 0

h and

?
rn+ 1

2 ,
?
sn+ 1

2 ∈ Rh. Note it follows from (4.1.4) and the above decomposition that (∇ · ?rn+1, qh) = 0

∀qh ∈ Qh.

Pick vh =
?
rn+ 1

2 in (4.1.3), then the (Pk, Qh) and SV solutions satisfy respectively

(
un+1
h − unh

∆t
,
?
rn+ 1

2 ) + γ(∇ · un+ 1
2

h ,∇ · ?rn+ 1
2 ) + (w

n+ 1
2

h × un+ 1
2

h ,
?
rn+ 1

2 )

+ν(∇un+ 1
2

h ,∇ ?
rn+ 1

2 ) = (f(tn+ 1
2 ),

?
rn+ 1

2 ) (4.3.4)

(
u0,n+1
h − u0,n

h

∆t
,
?
rn+ 1

2 ) + (p
0,n+ 1

2

h ,∇ · ?rn+ 1
2 ) + (w

0,n+ 1
2

h × u0,n+ 1
2

h ,
?
rn+ 1

2 )

+ν(∇u0,n+ 1
2

h ,∇ ?
rn+ 1

2 ) = (f(tn+ 1
2 ),

?
rn+ 1

2 ) (4.3.5)

Subtracting (4.3.5) from (4.3.4), rearranging and reducing with the following identities

∇ · un+ 1
2

h = ∇ · rn+ 1
2 = ∇ · ?rn+ 1

2 (4.3.6)

(∇rn+ 1
2 ,∇ ?

rn+ 1
2 ) = ν‖∇ ?

rn+ 1
2 ‖2 (4.3.7)

gives

1

∆t
(rn+1,

?
rn+ 1

2 )− 1

∆t
(rn,

?
rn+ 1

2 ) + ν‖ ?rn+ 1
2 ‖2 + γ‖∇ · ?rn+ 1

2 ‖2

= (w
n+ 1

2

h × un+ 1
2

h ,
?
rn+ 1

2 )− (w
0,n+ 1

2

h × u0,n+ 1
2

h ,
?
rn+ 1

2 )− (p
0,n+ 1

2

h ,
?
rn+ 1

2 ). (4.3.8)

Standard inequalities, bounds on solutions and Lemma 2.0.1 yields

1

∆t
(rn+1,

?
rn+ 1

2 )− 1

∆t
(rn,

?
rn+ 1

2 ) + ν‖ ?rn+ 1
2 ‖2 + γ‖∇ · ?rn+ 1

2 ‖2 ≤ C‖∇ ?
rn+ 1

2 ‖. (4.3.9)
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Similarly, if χh =
?
sn+ 1

2 in (4.1.5), the (Pk, Qh) and SV solutions respectively satisfy

(w
n+ 1

2

h ,
?
sn+ 1

2 ) + γ(∇ · wn+ 1
2

h ,∇ · ?sn+ 1
2 ) + (λ

n+ 1
2

h ,
?
sn+ 1

2 ) = (∇× un+ 1
2

h ,
?
sn+ 1

2 ), (4.3.10)

(w
0,n+ 1

2

h ,
?
sn+ 1

2 ) + (l
0,n+ 1

2

h ,
?
sn+ 1

2 ) = (∇× u0,n+ 1
2

h ,
?
sn+ 1

2 ). (4.3.11)

Subtracting (4.3.11) from (4.3.10) and rearranging gives

‖?sn+ 1
2 ‖2 + γ(∇ · wn+ 1

2

h ,∇ · ?sn+ 1
2 ) = −(sn+ 1

2 ,
?
sn+ 1

2 )− (λ
n+ 1

2

h ,
?
sn+ 1

2 ) + (∇× un+ 1
2

h ,
?
sn+ 1

2 )

+(l
0,n+ 1

2

h ,
?
sn+ 1

2 )− (∇× u0,n+ 1
2

h ,
?
sn+ 1

2 ). (4.3.12)

Reducing with standard inequalities, bounds on solutions, lemma and the following identity

∇ · wn+ 1
2

h = ∇ · sn+ 1
2 = ∇ · ?sn+ 1

2 (4.3.13)

gives

‖∇ · ?sn+ 1
2 ‖ ≤ C

γ
. (4.3.14)

Next for χh = sn+ 1
2 in (4.1.5) the (Pk, Qh) and SV solutions then satisfy the following

equalities

(w
n+ 1

2

h , sn+ 1
2 ) = (∇× un+ 1

2

h , sn+ 1
2 ), (4.3.15)

(w
0,n+ 1

2

h , sn+ 1
2 ) = (∇× u0,n+ 1

2

h , sn+ 1
2 ). (4.3.16)

Subtracting (4.3.16) from (4.3.15),rearranging and using standard inequalities gives

‖sn+ 1
2 ‖2 ≤ ‖?sn+ 1

2 ‖‖sn+ 1
2 ‖+ ‖∇ × rn+ 1

2 ‖‖sn+ 1
2 ‖. (4.3.17)

Reducing gives

‖∇sn+ 1
2 ‖ ≤ C(‖?sn+ 1

2 ‖+ ‖∇rn+ 1
2 ‖). (4.3.18)

Choosing vh = rn+ 1
2 in (4.1.3) admits the following equalities for the (Pk, Qh) and SV
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solution, respectively:

1

∆t
(un+1
h − unh, rn+ 1

2 ) + (w
n+ 1

2

h × un+ 1
2

h , rn+ 1
2 ) + ν(∇un+ 1

2

h , rn+ 1
2 ) = (f(tn+ 1

2 ), rn+ 1
2 ),(4.3.19)

1

∆t
(u0,n+1
h − u0,n

h , rn+ 1
2 ) + (w

0,n+ 1
2

h × u0,n+ 1
2

h , rn+ 1
2 ) + ν(∇u0,n+ 1

2

h , rn+ 1
2 ) = (f(tn+ 1

2 ), rn+ 1
2 ).(4.3.20)

Subtracting (4.3.20) from (4.3.19) and rearranging gives

1

∆t
(rn+1, rn+ 1

2 )− 1

∆t
(rn, rn+ 1

2 ) + ν‖∇rn+ 1
2 ‖2 (4.3.21)

= (w
n+ 1

2

h × un+ 1
2

h , rn+ 1
2 ) − (w

0,n+ 1
2

h × u0,n+ 1
2

h , rn+ 1
2 ). (4.3.22)

We majorize the left hand side by rewriting the nonlinear terms using a standard identity which

yields

1

∆t
(rn+1, rn+ 1

2 )− 1

∆t
(rn, rn+ 1

2 ) + ν‖∇rn+ 1
2 ‖2 (4.3.23)

≤ |(wn+ 1
2

h × rn+ 1
2 , rn+ 1

2 )| + |(sn+ 1
2 × u0,n+ 1

2

h , rn+ 1
2 )|. (4.3.24)

The first nonlinear term reduces using orthogonality and bounds on solutions. We bound the second

nonlinear term by splitting sn+ 1
2 into its orthogonal components which gives

1

∆t
(rn+1, rn+ 1

2 )− 1

∆t
(rn, rn+ 1

2 ) + ν‖∇rn+ 1
2 ‖2 ≤ C‖rn+ 1

2 ‖2 (4.3.25)

+C1‖∇
?
sn+ 1

2 ‖‖rn+ 1
2 ‖+ C2‖∇sn+ 1

2 ‖‖∇rn+ 1
2 ‖. (4.3.26)

To the right hand side we add C1‖∇
?
sn+ 1

2 ‖‖∇ ?
rn+ 1

2 ‖ and C2‖∇sn+ 1
2 ‖‖∇ ?

rn+ 1
2 ‖. Then reducing with

(4.3.14), (4.3.18) and standard inequalities gives

1

∆t
(rn+1, rn+ 1

2 )− 1

∆t
(rn, rn+ 1

2 ) + ν‖∇rn+ 1
2 ‖2 ≤ C

γ
+ Ch−1‖rn+ 1

2 ‖2. (4.3.27)

Adding (4.3.9) and (4.3.27), dropping the stiffness term and reducing gives

1

2∆t
‖rn+1‖2 − 1

2∆t
‖rn‖2 + γ‖∇ · ?rn+ 1

2 ‖2 ≤ C

γ
+ Ch−1‖rn+ 1

2 ‖2 + C‖∇ · ?rn+ 1
2 ‖. (4.3.28)

Using standard inequalities, multiplying by 2∆t and summing over time steps yields

‖rM‖2 + γ∆t

M−1∑
n=0

‖∇ · ?rn+ 1
2 ‖2 ≤ ‖r0‖2 + C∆t

M−1∑
n=0

‖rn+ 1
2

h ‖2 +
C̃T

γ
. (4.3.29)
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The discrete Gronwall inequality finishes the proof.

4.3.1 Penalty Method Formulation

We now show that Algorithm 4.1.1 using the SV elements is equivalent to a dual penalty

method with the TH elements (Pk, {0}). The penalty method is

Algorithm 4.3.1. Given a time step ∆t > 0, finite end time T := M∆t, and initial velocity

u0
h ∈ Vh, find w0

h ∈Wh and λ0
h ∈ Qh satisfying ∀(χh, rh) ∈ (Wh, Qh)

(w0
h, χh) + (λ0

h,∇ · χh) = (∇× u0
h, χh), (4.3.30)

(∇ · w0
h, rh) = 0. (4.3.31)

Then for n = 0, 1, 2, ...,M − 1, find (un+1
h , wn+1

h , Pn+1
h , λn+1

h ) ∈ (Xh,Wh, Qh, Qh) satisfying

∀(vh, χh, qh, rh) ∈ (Xh,Wh, Qh, Qh)

(
un+1
h − unh

∆t
, vh)− (Pn+1

h ,∇ · vh)

+(w
n+ 1

2

h × un+ 1
2

h , vh) + ν(∇un+ 1
2

h ,∇vh) = (f(tn+ 1
2 ), vh) (4.3.32)

(∇ · un+ 1
2

h , qh) + ε(Pn+1
h , qh) = 0 (4.3.33)

(w
n+ 1

2

h , χh)− (λn+1
h ,∇ · χh) = (∇× un+1

h , χh) (4.3.34)

(∇ · wn+ 1
2

h , rh) + ε(λn+1
h , rh) = 0. (4.3.35)

Now choosing qh = ∇ · vh and rh = ∇ · χh in (4.3.33) and (4.3.35) respectively then

rearranging gives

ε−1(∇ · un+ 1
2

h ,∇ · vh) = −(Pn+1
h ,∇ · vh) (4.3.36)

ε−1(∇ · wn+ 1
2

h ,∇ · χh) = −(λn+1
h ,∇ · χh) (4.3.37)

Substituting (4.3.35) and (4.3.37) into (4.1.3) and (4.1.5) respectively gives

(
un+1
h − unh

∆t
, vh) + ε−1(∇ · un+1

h ,∇ · vh)

+(w
n+ 1

2

h × un+ 1
2

h , vh) + ν(∇un+ 1
2

h ,∇vh) = (f(tn+ 1
2 ), vh) (4.3.38)

(w
n+ 1

2

h , χh) + ε−1(∇ · wn+ 1
2

h ,∇ · χh) = (∇× un+ 1
2

h , χh); (4.3.39)

(4.3.40)
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which is identical to the scheme for the stabilized (Pk, {0}) element pair, with the identification of

γ = ε−1.

4.4 Numerical Experiments

In this section we present two numerical experiments. This first is a verification of predicted

convergence rates, and the second is a simulation of channel flow over a 3d forward-backward step.

All computations were performed in MATLAB. Linear solves were performed using ‘backslash’,

which is very efficient when using the penalty method formulation of the discrete problem.

4.4.1 Numerical Test 1: Convergence rate verification

To verify convergence rates predicted in Section 3, we compute approximations to to the

model problem with solution

u1 = cos(2πz)(1 + 0.01t) (4.4.1)

u2 = sin(2πz)(1 + 0.01t) (4.4.2)

u3 = sin(2πz)(1 + 0.01t) (4.4.3)

p = sin(2π(x+ y + z)). (4.4.4)

from t = 0 to T = 1, with ν = 1. We use the penalty method with grad-div parameter γ = 10, 000,

and compute with Xh = P3, on barycenter refinements of uniform meshes.

Errors and rates are shown in Tables 4.1 and 4.2, for successively finer meshes and reduced

timesteps. Optimal rates are observed for velocity and vorticity in the indicated norms, verifying

the results of Section 3. We note that on the finest mesh, (decoupled) linear solves averaged 66

seconds on a 2 x 2.66 GHz Quad-Core Intel Xeon processor with 12 GB 1066 MhZ DDR3 memory,

and 21 seconds on the second finest mesh, and 60 seconds on the finest one. Each nonlinear solve

required between 3 and 4 iterations, and thus between 6 and 8 (reduced) linear solves for each of

velocity and vorticity.

4.4.2 3 dimensional channel flow over a forward-backward step

We now present results for time dependent 3d channel flow over a forward-backward facing

step with Re = 200. A diagram of the flow domain is given in Figure 4.1. The flow we study is an

altered version of the flow studied in [32], but with a different treatment of boundary conditions.
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h ∆t dim(Xh) Total dof ‖|u− uh|‖L∞(L2) rate ‖|u− uh|‖L2(H1) rate

1/2 T 3,189 10,218 4.134e-2 9.025e-1
1/4 T/3 23,871 78,462 2.761e-3 3.90 1.041e-1 3.12
1/6 T/6 78,987 261,654 5.6274e-4 3.92 3.013e-2 3.00
1/8 T/9 185,115 615,990 1.794e-4 3.97 1.298e-2 3.01
1/10 T/18 359,373 1,198,746 7.374e-5 3.98 6.593e-3 3.04

Table 4.1: The errors and rates for the velocity solution in numerical experiment 1. Rates appear
optimal. The ‘Total dof’ column shows the total degrees of freedom required if SV elements were
used.

h ∆t ‖|w − wh|‖L2(L2) rate ‖|∇ · uh|‖L∞(L2) ‖|∇ · wh|‖L∞(L2)

1/2 T 5.445e-1 1.8631e-4 3.778e-6
1/4 T/3 6.186e-2 3.14 2.283e-5 1.687e-7
1/6 T/6 1.675e-2 3.22 2.121e-5 2.797e-8
1/8 T/9 7.085e-3 2.99 4.226e-5 8.077e-9
1/10 T/18 3.453e-3 3.22 4.214e-5 3.235e-9

Table 4.2: The errors and rates for the vorticity in numerical experiment 1, as well as the errors in
the velocity and vorticity divergences.

First, we choose no-slip boundaries for the channel walls. For the inflow conditions, [32] uses the

constant inflow profile uin =< 0, 1, 0 >, which is both nonphysical and not appropriate for a velocity-

vorticity method since vorticity at the inflow edges will approach infinity as the meshwidth decreases.

Thus, instead, we treat the problem as an infinite channel and enforce uin = uout, and taking the

initial condition to be the steady Re = 50 solution.

We use Xh = P3, and compute on a barycenter refined tetrahedral mesh, which provides

1,282,920 total degrees of freedom for the full SV discretization, 398,001 of which form the velocity

space. The system is solved with the penalty method described above with γ = 10, 000. A timestep

of ∆t = 0.025 is used, and we compute to T = 10. Visualizations of the solution are shown in

Figures 4.2 and 4.3, and the correct physical behavior is realized - an eddy detaches from the step

and moves down the channel, and a new eddy forms.
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Figure 4.1: Shown above is domain for the 3d channel flow over a step problem.

Figure 4.2: Shown above is the x = 5 sliceplane of speed contours and velocity streamlines at
T = 10. An eddy can be observed to have moved down the channel, and a second eddy has formed
behind the step.
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Figure 4.3: Shown above is a plot of the same velocity field as in Figure 4.2, but zoomed in near
the step. Streamribbons are used to visualize the flow, and more clearly show the eddies.
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Chapter 5

Convergence Rate of Grad-div

Stabilized TH solutions to SV

solutions

5.1 Order of convergence for NSE approximations

We consider the rate of convergence of finite element approximations of the NSE using

grad-div stabilized TH formulations to the solution of SV elements, as the grad-div stabilization

parameter γ tends to zero. We show first for the steady case, then for the time-dependent case, that

the rate is O(γ−1).

5.1.1 The steady NSE case

Consider the discrete steady convective NSE formulation: Find (uh, ph) ∈ (Xh, Ph) such

that ∀(vh, qh) ∈ (Xh, Ph), where Ph = Qh (TH) or Q̃h (SV),

b∗(uh, uh, vh)− (ph,∇ · vh) + ν(∇uh,∇vh) + γ(∇ · uh,∇ · vh) = (f, vh) (5.1.1)

(∇ · uh, qh) = 0. (5.1.2)

We note that for the case of SV elements, the grad-div term trivially vanishes.

Define α := 1 − Csν−2‖f‖−1. The formulation (5.1.1)-(5.1.2) is known to be well-posed

under the small data condition α > 0 [37], for either element choice, due to assumptions on the
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mesh and polynomial degree.

Lemma 5.1.1. Solutions to (5.1.1)-(5.1.2) exist and satisfy

ν‖∇uh‖2 + 2γ‖∇ · uh‖2 ≤ ν−1‖f‖2−1 (5.1.3)

If Ph = Qh: ‖ph − γ(∇ · uh)‖ ≤ ‖f‖−1

(
1 + Csν

−2‖f‖+ ν−1
)

(5.1.4)

If Ph = Q̃h: ‖ph‖ ≤ ‖f‖−1

(
1 + Csν

−2‖f‖+ ν−1
)

(5.1.5)

If α > 0, then solutions are unique.

Proof. Taking vh = uh in (5.1.1) and using Cauchy-Schwarz and Young’s inequalities gives (5.1.3).

The pressure bounds follow directly from the discrete LBB condition and the bound (5.1.3). The

SV pressure bound does not include the term with γ since the grad-div term is trivially zero in this

case.

Remark 5.1.1. We consider limiting behavior as γ → ∞, and thus the bound (5.1.4) seems in-

sufficient to guarantee stability of the pressure in the limit. However, the following theorem implies

that ‖∇ · uh‖ ≤ C
γ , and the TH pressure solution is indeed bounded by a data-dependent constant,

independent of γ.

Theorem 5.1.1. On a fixed mesh and with data satisfying α > 0, the TH velocity solutions to

(5.1.1)-(5.1.2) converge to the SV velocity solution with convergence order γ−1 in the energy norm,

as γ →∞; that is, if uh is the TH solution and u0
h is the SV solution, then

‖∇(uh − u0
h)‖ ≤ C

γ
.

Proof. Let (u0
h, p

0
h) ∈ (V 0

h , Q̃h) denote the solution of (5.1.1)-(5.1.2) using SV elements, (uh, ph) ∈

(Vh, Qh) for the TH solution, and the difference between them to be rh ∈ Vh, so that

uh = u0
h + rh.

For the TH solution uh, setting vh = w0
h ∈ V 0

h and sh ∈ Rh, respectively, in (5.1.1) gives the

equations

b∗(uh, uh, w
0
h) + ν(∇uh,∇w0

h) = (f, w0
h), (5.1.6)

b∗(uh, uh, sh) + ν(∇uh,∇sh) + γ(∇ · uh,∇ · sh) = (f, sh). (5.1.7)
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Similarly, the SV solution u0
h ∈ V 0

h satisfies

b∗(u0
h, u

0
h, w

0
h) + ν(∇u0

h,∇w0
h) = (f, w0

h), (5.1.8)

b∗(u0
h, u

0
h, sh)− (p0

h,∇ · sh) = (f, sh). (5.1.9)

From (5.1.7) and (5.1.9), we have

b∗(uh, uh, sh) + ν(∇uh,∇sh) + γ(∇ · uh,∇ · sh) = b∗(u0
h, u

0
h, sh)− (p0

h,∇ · sh), (5.1.10)

and since (∇uh,∇sh) = (∇rh,∇sh) and ∇ · uh = ∇ · rh,

ν(∇rh,∇sh) + γ(∇ · rh,∇ · sh) = b∗(u0
h, u

0
h, sh)− b∗(uh, uh, sh)− (p0

h,∇ · sh)

= −b∗(rh, u0
h, sh)− b∗(uh, rh, sh)− (p0

h,∇ · sh). (5.1.11)

Orthogonally decompose rh =: r0
h + r′h, where r0

h ∈ V 0
h and r′h ∈ rh. Now setting vh = r′h in (5.1.11)

gives, after reducing with orthogonality properties and using Lemma 2.0.9,

ν‖∇r′h‖2 + γ‖∇ · r′h‖2 = −b∗(rh, uh, r′h)− b∗(u0
h, rh, r

′
h)− (p0

h,∇ · r′h)

≤ C
(
M‖∇rh‖‖∇u0

h‖+M‖∇rh‖‖∇uh‖+ ‖p0
h‖
)
‖∇ · r′h‖ (5.1.12)

Since uh, u0
h are uniformly bounded by the data by (5.1.3), independent of γ, rh is also. Using this

and (5.1.5) provides

ν‖∇r′h‖2 + γ‖∇ · r′h‖2 ≤ C‖∇ · r′h‖. (5.1.13)

Dropping the first term on the left and dividing by ‖∇ · r′h‖ gives

‖∇ · r′h‖ ≤
C

γ
, (5.1.14)

which implies from Lemma 2.0.9 that

‖∇r′h‖ ≤
C

γ
. (5.1.15)
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It remains to bound ‖∇r0
h‖. From (5.1.6), (5.1.8), and taking w0

h = r0
h, we get

b∗(uh, uh, r
0
h) + ν(∇uh,∇r0

h) = b∗(u0
h, u

0
h, r

0
h) + ν(∇u0

h,∇r0
h), (5.1.16)

which reduces to

ν(∇rh,∇r0
h) = b∗(u0

h, u
0
h, r

0
h)− b∗(uh, uh, r0

h),

= −b∗(uh, rh, r0
h)− b∗(rh, u0

h, r
0
h). (5.1.17)

Skew symmetry properties and decomposing rh gives

ν‖∇r0
h‖2 = −b∗(uh, r′h, r0

h)− b∗(r0
h, u

0
h, r

0
h)− b∗(r′h, u0

h, r
0
h). (5.1.18)

Standard inequalities and (5.1.3) now provides

ν‖∇r0
h‖2 ≤ C‖∇r′h‖‖∇r0

h‖+ Csν
−1‖f‖−1‖∇r0

h‖2. (5.1.19)

Using the small data condition, then dividing through by ‖∇r0
h‖ gives

‖∇r0
h‖ ≤ C‖∇r′h‖ ≤

C

γ
. (5.1.20)

The triangle inequality completes the proof, as

‖∇(uh − u0
h)‖ = ‖∇rh‖ ≤ ‖∇r0

h‖+ ‖∇r′h‖ ≤
C

γ
. (5.1.21)

Lemma 5.1.2. If ph is the TH pressure and p0
h is the SV pressure then

‖p0
h − (ph − γ∇ · uh)‖ ≤ C

γ .

Proof. The TH and SV solutions to (5.1.1)-(5.1.2) satisfy respectively

b∗(uh, uh, vh)− (ph,∇ · vh) + ν(∇uh,∇vh) + γ(∇ · uh,∇ · vh) = (f, vh), (5.1.22)

b∗(u0
h, u

0
h, vh)− (p0

h,∇ · vh) + ν(∇u0
h,∇vh) = (f, vh). (5.1.23)
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Subtracting (5.1.23) from (5.1.22) and rearranging gives

(p0
h − (ph − γ∇ · uh),∇ · vh) = b∗(u0

h, u
0
h − uh, vh) + b∗(u0

h − uh, uh, vh)

+ ν(∇(u0
h − uh), vh). (5.1.24)

From Lemma 2.0.2, Theorem 5.1.1 and bounds on solutions it follows that

(p0
h − (ph − γ∇ · uh),∇ · vh) ≤ C

γ
‖∇vh‖. (5.1.25)

Dividing (5.1.25) by ‖∇vh‖ and the LBB condition (of the SV element) finishes the proof.

5.1.2 The time-dependent case for the NSE

For the time-dependent case, we find an analogous result to the steady case. We consider

the semi-discrete formulation, and extension to the usual temporal discretizations such as backward

Euler and Crank-Nicolson is straight-forward, although technical. Thus we proceed to study the

following problems: Given uh(0) ∈ V 0
h , find (uh(t), ph(t)) ∈ (Xh, Ph) × (0, T ] such that ∀(vh, qh) ∈

(Xh, Ph), where Ph = Qh (TH) or Q̃h (SV),

((uh)t, vh) + b∗(uh, uh, vh)− (ph,∇ · vh) + ν(∇uh,∇vh)

+γ(∇ · uh,∇ · vh) = (f, vh) (5.1.26)

(∇ · uh, qh) = 0. (5.1.27)

It is straight-forward to show (e.g. [37]) that this formulation admits unique solutions satisfying for

0 ≤ t ≤ T ,

‖uh(t)‖2 + ν

∫ t

0

‖∇uh(s)‖2 ds+ γ

∫ t

0

‖∇ · uh(s)‖2 ds ≤ C(data), (5.1.28)

If Ph = Qh: ‖ph‖ ≤ (1 + γ) · C(data), (5.1.29)

If Ph = Q̃h: ‖ph‖ ≤ C(data). (5.1.30)

Remark 5.1.2. For the fully discrete case, there is a restriction that the time-step be small enough

to get uniqueness; otherwise an analogous result holds.

Remark 5.1.3. With the following theorem, the bound (5.1.29) can be improved to be independent

of γ.
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Theorem 5.1.2. On a fixed mesh, the TH velocity solutions to (5.1.26)-(5.1.27) converge to the

SV solution with convergence order γ−1 in the energy norm, as γ → ∞. That is, if uh is the TH

solution and u0
h is the SV solution, then

‖uh − u0
h‖L2(0,T ;H1(Ω)) ≤

C

γ
.

Remark 5.1.4. The stability estimate (5.1.28) suggests the rate may be only γ−1/2 since the SV

solution is pointwise divergence-free, but the theorem proves it is indeed faster.

Proof. Our strategy for this proof is similar to that of the steady case. Let (u0
h, p

0
h) ∈ (V 0

h , Q̃h)×[0, T ]

denote the solution of (5.1.26)-(5.1.27) using SV elements, (uh, ph) ∈ (Vh, Qh) × [0, T ] for the TH

solution, and the difference between them to be rh ∈ Vh × [0, T ], so that

uh(t) = u0
h(t) + rh(t).

Again we orthogonally decompose rh(t) = r′h(t) + r0
h(t), where r′h(t) ∈ rh and r0

h(t) ∈ V 0
h ; recall

Vh = V 0
h ⊕Rh in the Xh inner product.

Consider (5.1.26) with an arbitrary test function sh ∈ Rh ⊂ Vh. The TH and SV solutions

satisfy, respectively,

((uh)t, sh) + b∗(uh, uh, sh) + ν(∇uh,∇sh) + γ(∇ · uh,∇ · sh) = (f, sh), (5.1.31)

((u0
h)t, sh) + b∗(u0

h, u
0
h, sh)− (p0

h,∇ · sh) + ν(∇u0
h,∇sh) = (f, sh). (5.1.32)

Subtracting and utilizing the following identities

∇ · uh = ∇ · rh = ∇ · r′h (5.1.33)

(∇rh,∇sh) = (∇r′h,∇sh). (5.1.34)

provides the equation

((rh)t, sh) + ν(∇r′h,∇sh) + γ(∇ · r′h,∇ · sh) = −b∗(rh, u0
h, sh)− b∗(uh, rh, sh)− (p0

h,∇ · sh).
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Taking sh = r′h, then reducing with Lemmas 2.0.2 and 2.0.9, and (5.1.28) and (5.1.30) yields

((rh)t, r
′
h) + ν‖∇r′h‖2 + γ‖∇ · r′h‖2

= −b∗(rh, u0
h, r
′
h)− b∗(uh, r0

h, r
′
h)− (p0

h,∇ · r′h)

≤ Cs‖∇rh‖‖∇u0
h‖‖∇r′h‖+ Cs‖∇uh‖‖∇r0

h‖‖∇r′h‖+ ‖p0
h‖‖∇ · r′h‖

≤ Cs‖∇rh‖‖∇u0
h‖M‖∇ · r′h‖+ Cs‖∇uh‖‖∇r0

h‖M‖∇ · r′h‖+ ‖p0
h‖‖∇ · r′h‖

≤
(
CsM‖∇rh‖‖∇u0

h‖+ CsM‖∇uh‖‖∇r0
h‖+ ‖p0

h‖
)
‖∇ · r′h‖

≤ C‖∇ · r′h‖. (5.1.35)

We now bound r0
h. Consider (5.1.26) with an arbitrary test function w0

h ∈ V 0
h . The TH and

SV solutions satisfy, respectively,

((uh)t, w
0
h) + b∗(uh, uh, w

0
h) + ν(∇uh,∇w0

h) = (f, w0
h), (5.1.36)

((u0
h)t, w

0
h) + b∗(u0

h, u
0
h, w

0
h) + ν(∇u0

h,∇w0
h) = (f, w0

h). (5.1.37)

Subtracting gives

((rh)t, w
0
h) + ν(∇rh,∇w0

h) = −b∗(uh, uh, w0
h) + b∗(u0

h, u
0
h, w

0
h), (5.1.38)

which reduces to

((rh)t, w
0
h) + ν(∇r0

h,∇w0
h) = −b∗(rh, uh, w0

h)− b∗(u0
h, rh, w

0
h). (5.1.39)

Taking w0
h = r0

h gives

((rh)t, r
0
h) + ν‖∇r0

h‖2 = −b∗(rh, uh, r0
h)− b∗(u0

h, rh, r
0
h) (5.1.40)

= −b∗(r0
h, uh, r

0
h)− b∗(r′h, uh, r0

h)− b∗(u0
h, r
′
h, r

0
h) (5.1.41)

Using lemmas 2.0.2 and 2.0.9, and the uniform bound on solutions yields

((rh)t, r
0
h) + ν‖∇r0

h‖2

≤ Cs‖∇r0
h‖3/2‖∇uh‖‖r0

h‖1/2 + Cs‖∇r′h‖‖∇uh‖‖∇r0
h‖+ Cs‖∇r′h‖‖∇u0

h‖‖∇r0
h‖

≤ Cs‖∇r0
h‖3/2‖∇uh‖‖r0

h‖1/2 + C‖∇ · r′h‖. (5.1.42)
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Adding (5.1.35) to (5.1.42) gives

((rh)t, r
0
h) + ((rh)t, r

′
h) + ν‖∇r0

h‖2 + ν‖∇r′h‖2 + γ‖∇ · r′h‖2

≤ Cs‖∇r0
h‖3/2‖∇uh‖‖r0

h‖1/2 + (C + ‖p0
h‖)‖∇ · r′h‖, (5.1.43)

which reduces with orthogonality properties, the uniform bounds on solutions, then standard in-

equalities to

1

2

d

dt
‖rh‖2 + ν‖∇rh‖2 + γ‖∇ · r′h‖2

≤ Cs‖∇r0
h‖3/2‖∇uh‖‖r0

h‖1/2 + C‖∇ · r′h‖

≤ C‖rh‖2 + ν‖∇rh‖2 +
C

2γ
+
γ

2
‖∇ · r′h‖2. (5.1.44)

This leaves

d

dt
‖rh‖2 + γ‖∇ · r′h‖2 ≤ C‖rh‖2 +

C

γ
. (5.1.45)

The Gronwall inequality, uh(0) = u0
h(0), and reducing gives us

∫ t

0

‖∇ · r′h‖2 dt ≤
C

γ2
, (5.1.46)

which proves the theorem.

5.2 Extension to turbulence models

Recent work on finite element methods for the ‘α models’ of fluid flow has proven their effec-

tiveness at finding accurate solutions to flow problems on coarser spatial and temporal discretizations

than are necessary for successful simulations of the NSE [43, 44, 52, 6, 66, 50, 12, 11, 28]. We prove

the convergence result for grad-div stabilized TH solutions to SV solutions of the Leray-α model;

analogous results / proofs for the other α models follow similarly. Since a goal of the α-models is

to find solutions on coarser meshes than would be used for the NSE, mass conservation of solutions

can be very poor and thus large grad-div stabilization that preserves overall accuracy and improves

the mass conservation will help to provide more physically relevant solutions.

The continuous Leray-α model formulation is: find (uh, ph, wh, λh) ∈ (Xh, Ph, Xh, Ph) such
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that ∀(vh, qh, χh, ψh) ∈ (Xh, Ph, Xh, Ph), where Ph = Qh (TH) or QSVh (SV),

((uh)t, vh) + b∗(wh, uh, vh)− (ph,∇ · vh) + ν(∇uh,∇vh)

+γ(∇ · uh,∇ · vh) = (f, vh), (5.2.1)

(∇ · uh, qh) = 0, (5.2.2)

(wh, χh) + α2(∇wh,∇χh) + (λh,∇ · χh) + γ(∇ · wh,∇ · χh) = (uh, χh), (5.2.3)

(∇ · wh, ψh) = 0. (5.2.4)

The equations (5.2.3)-(5.2.4) are the discretization of the α-filter, with discrete incompressiblity

enforced. Advantages of using this discretization for the filter instead of the usual one are discussed

in [6].

The following lemma will be useful for the analysis in this section.

Lemma 5.2.1. If (uh, ph, wh, λh) solves (5.2.1)-(5.2.4) then ‖wh‖ ≤ ‖uh‖.

Proof. The lemma can be verified quickly by choosing χh = wh in (5.2.3) and using the Cauchy-

Schwarz inequality.

Theorem 5.2.1. On a fixed mesh the grad-div stabilized TH velocity solutions to (5.2.1)-(5.2.4)

converge to the SV velocity solution with convergence order γ−1 in the energy norm, as γ → ∞.

That is, if we denote the SV velocity solutions as u0
h and grad-div stabilized TH solution as uh then

‖uh − u0
h‖L2(0,T ;H1(Ω)) ≤

C

γ
.

Proof. Let (u0
h, w

0
h, p

0
h, λ

0
h) ∈ (Xh, Xh, Q̃h, Q̃h) × [0, T ] denote the solution of (5.2.1)-(5.2.4) using

SV elements, (uh, wh, ph, λh) ∈ (Xh, Xh, Qh, Qh) × [0, T ] for the TH solution. Let the difference

between uh and u0
h be denoted by ru and the difference between wh and w0

h be denoted by rw so

that

uh(t) = u0
h(t) + ru(t), and

wh(t) = w0
h(t) + rw(t).

Orthogonally decompose ru(t) = r′u(t) + r0
u(t), where r′u(t) ∈ Rh and r0

u(t) ∈ V SVh . Similarly,

orthogonally decompose rw(t) = r′w(t) + r0
w(t) so that r′w(t) ∈ Rh and r0

w(t) ∈ V SVh .

Consider (5.2.1) and (5.2.3) with an arbitrary test function sh ∈ Rh ⊂ Vh. The TH and SV
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solutions satisfy, respectively,

((uh)t, sh) + b∗(wh, uh, sh) + ν(∇uh,∇sh) + γ(∇ · uh,∇ · sh) = (f, sh) (5.2.5)

((u0
h)t, sh) + b∗(w0

h, u
0
h, sh)− (p0,∇ · sh) + ν(∇u0

h,∇sh) = (f, sh). (5.2.6)

Subtracting using previous identities gives

((ru)t, sh) + ν(∇r′u,∇sh) + γ(∇ · r′u,∇ · sh) = b∗(w0
h, u

0
h, sh)− b∗(wh, uh, sh)− (p0

h, sh).

Taking sh = r′u, and reducing with Lemmas 2.0.2, 2.0.9 and 5.2.1, and uniqueness of solutions yields

((ru)t, r
′
u) + ν‖∇r′u‖2 + γ‖∇ · r′u‖2

= b∗(w0
h, u

0
h, r
′
u)− b∗(wh, uh, r′u)− (p0

h, r
′
u)

≤ Cs(‖∇w0
h‖‖∇u0

h‖‖∇r′u‖+ ‖∇wh‖‖∇uh‖‖∇r′u‖) + ‖p0
h‖‖∇ · r′u‖

≤ C‖∇ · r′u‖. (5.2.7)

We now derive a similar bound for r′w. Consider that the TH and SV solutions satisfy the

following equations from (5.2.3):

(wh, χh) + α2(∇wh,∇χh) + (λh,∇ · χh) + γ(∇ · wh,∇ · χh) = (uh, χh), (5.2.8)

(w0
h, χh) + α2(∇w0

h,∇χh) + (λ0
h,∇ · χh) = (u0

h, χh). (5.2.9)

Subtracting, choosing χh = rw, and rearranging gives

‖rw‖2 + α2‖∇rw‖2 + γ‖∇ · r′w‖2 = (ru, rw)− (λ0
h,∇ · r′w). (5.2.10)

The Cauchy-Schwarz inequality and Lemma 2.2 yields

‖∇ · r′w‖ ≤
C

γ
. (5.2.11)

Next we derive a bound for r0
w. To do this we subtract (5.2.9) from (5.2.8) and choose

χh = r0
w which gives

(rw, r
0
w) + α2‖∇r0

w‖2 = (ru, r
0
w). (5.2.12)

64



From here we rearrange using Cauchy-Schwarz and equivalence of norms over finite dimensional

Hilbert spaces which gives

‖∇r0
w‖ ≤ C (‖∇ru‖+ ‖∇r′w‖) . (5.2.13)

We proceed similar to the time-dependent NSE case and bound r0
u. Consider (5.2.1) with

an arbitrary test function vSVh ∈ V SVh . The TH and SV solutions satisfy

((uh)t, v
SV
h ) + b∗(wh, uh, v

SV
h ) + ν(∇uh,∇vSVh ) = (f, vSVh ), (5.2.14)

((u0
h)t, v

SV
h ) + b∗(w0

h, u
0
h, v

SV
h ) + ν(∇u0

h,∇vSVh ) = (f, V SVh ). (5.2.15)

Subtracting (5.2.15) from (5.2.14) rearranging and choosing vh = r0
u gives

((ru)t, r
0
u) + ν‖∇r0

u‖2 ≤ |b∗(w0
h, ru, r

0
u)|+ |b∗(rw, uh, r0

u)|. (5.2.16)

To majorize the first trilinear term in (5.2.16) use Lemmas 2.1 and 4.1, bounds on solutions and note

that for orthogonal decompositions the triangle inequality is an equality. Lastly, using equivalence

of norms gives

|b∗(w0
h, ru, r

0
u)| ≤ C‖∇ru‖‖∇r0

u‖ ≤ C‖∇ru‖‖∇r0
u‖+ C‖∇ru‖‖∇r′u‖

≤ C‖∇ru‖2

≤ C‖ru‖2. (5.2.17)

We bound the second trilinear using Lemma 2.1 and uniform bound on solutions. Then we split the

rw term using the triangle inequality and use (5.2.13), which yields

|b∗(rw, uh, r0
u)| ≤ C‖∇rw‖‖∇r0

u‖

≤ C‖∇r′w‖‖∇r0
u‖+ C‖∇r0

w‖‖∇r0
u‖. (5.2.18)

Adding C‖∇r′w‖‖∇r′u‖ and C‖∇r0
w‖‖∇r′u‖ to the right hand side of (5.2.18) and using orthogonality

gives

|b∗(rw, uh, r0
u)| ≤ C‖∇r′w‖‖∇ru‖+ C‖∇r0

w‖‖∇ru‖. (5.2.19)
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We majorize the first right hand side term using Lemma 2.2, bounds on solutions and (5.2.11).

Additionally, we majorize the second right hand side term using (5.2.13). After we combine like

terms we are left with

|b∗(rw, uh, r0
u)| ≤ C

γ
+ C‖∇ru‖2. (5.2.20)

From equivalence of norms we have that ‖∇ru‖ ≤ C‖ru‖. Therefore,

((ru)t, r
0
u) + ν‖∇r0

u‖2 ≤ C

γ
+ C‖ru‖2. (5.2.21)

Adding (5.2.21) and (5.2.7) gives

d

dt
‖ru‖2 + 2γ‖∇ · r′u‖2 ≤ C‖ru‖2 +

C

γ
. (5.2.22)

Analogous to the time-dependent NSE proof using the Gronwall inequality, uh(0) = u0
h(0) and

reducing finishes the proof.

5.2.1 Numerical Verification for the Leray-α model

To numerically verify the velocity convergence rate shown above we consider the benchmark

2d problem of channel flow over a forward-backward step. The domain Ω is a 40×10 rectangle with

a 1×1 step 5 units into the channel at the bottom. The top and bottom of the channel as well

as the step are prescribed with no-slip boundary conditions, and the sides are given the parabolic

profile (y(10− y)/25, 0)T . We use the initial condition u0 = (y(10− y)/25, 0)T inside Ω, choose the

viscosity ν = 1/600 and run the test to T=10. The correct physical behavior is for an eddy to form

behind the step (at larger T , the eddy will move down the channel and a new eddy will form).

A barycenter-refinement of a Delauney triangulation of Ω is used, which yields a total of

14,467 degrees of freedom for the (P2, P
disc
1 ) SV computations and 9,427 for (P2, P1) TH. A Crank-

Nicolson time discretization is used with a timestep of ∆t = 0.01. For the TH computations, we use

grad-div stabilization parameters γ = {0, 1, 10, 100, 1, 000, 10, 000}.

Plots of the SV and TH solutions are shown in Figure 5.1, and the correct physical behavior

is observed in both; in fact, these solutions are nearly indistinguishable. Plots of the TH solutions

with γ > 0 are also nearly identical and so are omitted. Differences between the TH solutions with

varying γ, and the SV solution are computed in the H1 norm, and are shown (with rates) in Table

5.1; first order convergence is observed, in accordance with our theory. The divergence errors of the
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TH solutions are given in Table 5.1, which also display first order convergence. Also of particular

interest is that the TH solution with γ = 0 has very poor mass conservation, even though its plot

appears correct.

γ ‖uγTH − uSV ‖H1 rate ‖∇ · uγTH‖
0 2.0360 - 1.2466
1 0.1473 1.14 0.0085
10 0.0311 0.68 9.836E-4
102 0.0035 0.94 8.774E-5
103 3.616E-4 0.99 8.667E-6
104 3.622E-5 1.00 8.948E-7

Table 5.1: Convergence of the grad-div stabilized TH Leray-α solutions toward the SV Leray-α
solution, first order as γ →∞.
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Figure 5.1: SV and TH solutions of the Leray-α model at t = 10.
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5.3 Extension to magnetohydrodynamic flows

To understand a fluid flow which is influenced by a magnetic field one must understand

the mutual interaction of a magnetic field and a velocity field. The system of differential equations

which describe the flow of an electrically conductive and nonmagnetic incompressible fluid (e.g.

liquid sodium) are called magnetohydrodynamics (MHD). These equations are commonly used in

metallurgical industries to heat, pump, stir and levitate liquid metals [15].

We consider the steady MHD in the form studied in, e.g., [26, 27], which is the NSE coupled

to the pre-Maxwell equations. For simplicity of the analysis, we restrict to homogeneous Dirichlet

boundary conditions (or periodic) for both velocity and the magnetic field and consider a convex

domain. The Galerkin finite element method that explicitly enforces incompressibility of both the

velocity and magnetic fields and with grad-div stabilization of both velocity and magnetic fields is,

∀(vh, χh, qh, ψh) ∈ (Xh, Xh, Qh, Qh),

b∗(uh, uh, vh) + ν(∇uh,∇vh)− sb∗(Bh, Bh, vh)

−(Ph,∇ · vh) + γ(∇ · uh,∇ · vh) = (f, vh) (5.3.1)

(∇ · uh, qh) = 0 (5.3.2)

νm(∇Bh,∇χh)− b∗(Bh, uh, χh) + b∗(uh, Bh, χh)

+(λh,∇ · χh) + γ(∇ ·Bh,∇ · χh) = (∇×G,χh) (5.3.3)

(∇ ·Bh, ψh) = 0. (5.3.4)

The Lagrange multiplier is added in (5.3.3) so that the divergence of the magnetic field can be

explicitly enforced via (5.3.4) without overdetermining the discrete system.

For the choice of (Xh, Qh) to be Taylor Hood elements, both ∇ · uh = 0 and ∇ ·Bh = 0 are

enforced weakly in (5.3.1)-(5.3.4), but if instead SV elements are chosen then pointwise enforcement

is recovered (choose qh = ∇ · uh and ψh = ∇ · Bh). Similar to the NSE case, there is a ‘middle

ground’ of improved mass conservation while using TH elements, if γ is chosen “large”. Note we

consider the stabilization parameters to be equal only for simplicity since we consider their limiting

behavior; in practice it may be necessary to choose them differently for optimal accuracy.

Lemma 5.3.1. Solutions to (5.3.1) - (5.3.4) exist and satisfy

‖∇uh‖ ≤ ν−1‖f‖−1 + s
−1
2 ν

−1
2 ν

−1
2
m ‖G‖(=: M1), (5.3.5)

‖∇Bh‖ ≤ ν
−1
2 ν

−1
2
m s

−1
2 ‖f‖+ ν−1

m ‖G‖(=: M2). (5.3.6)
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If

ν − CsM1 − 2sCsM2 > 0, and (5.3.7)

νm − CsM1 − 2CsM2 > 0 (5.3.8)

then solutions are unique.

Proof. Existence of solutions is a straight forward application of the Leray-Schauder Theorem. To

derive (5.3.5) and (5.3.6) we multiply (5.3.3) by s and add it to (5.3.1). Next we choose vh = uh

and χh = Bh. Noting that b∗(Bh, Bh, uh) = −b∗(Bh, uh, Bh) leaves

ν‖∇uh‖2 + sνm‖∇Bh‖2 ≤ (f, uh) + s(∇×G,Bh). (5.3.9)

The bounds can be derived from (5.3.9) by using Young’s inequality.

To derive sufficient conditions for uniqueness assume (to get a contradiction) that there are

two solutions to (5.3.1)-(5.3.4), (u1
h, B

1
h, p

1
h, λ

1
h) and (u2

h, B
2
h, p

2
h, λ

2
h). Now let Du := u1

h − u2
h and

DB := B1
h − B2

h. Substituting u1
h, u

2
h into (5.3.1), choosing vh = Du, subtracting and rearranging

gives

ν‖∇Du‖2 + γ‖∇ ·Du‖2 = b∗(u2
h, u

2
h, Du)− b∗(u1

h, u
1
h, Du)

+ sb∗(B1
h, B

1
h, Du)− sb∗(B2

h, B
2
h, Du). (5.3.10)

Using standard inequalities and noting that b∗(v, u, u) = 0 we can rewrite (5.3.10) as

ν‖∇Du‖2 + γ‖∇ ·Du‖2 = sb∗(B1
h, DB , Du) + sb∗(DB , B

2
h, Du)

− b∗(Du, u
1
h, Du). (5.3.11)

Scaling (5.3.3) by s and similar treatment gives

sνm‖DB‖2 + sγ‖∇ ·DB‖2 = sb∗(B1
h, Du, DB) + sb∗(DB , u

2
h, DB)

− sb∗(Du, B
1
h, DB). (5.3.12)
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Adding (5.3.11) and (5.3.12) and noting that b∗(B1
h, Du, DB) = −b∗(B1

h, DB , Du), yields

ν‖Du‖2 + sνm‖DB‖2 ≤ sb∗(DB , u
2
h, DB)− sb∗(Du, B

1
h, DB)

+ sb∗(DB , B
2
h, Du)− b∗(Du, u

1
h, Du). (5.3.13)

Utilizing Lemma 2.1 and Young’s inequality we can now rewrite this as

‖∇Du‖2(ν − CsM1 − 2sCsM2) + ‖∇DB‖2s(νm − CsM1 − 2CsM2) ≤ 0. (5.3.14)

Uniqueness then follows from (5.3.7) and (5.3.8).

5.3.1 Convergence of velocity and magnetic field TH solutions to the SV

solution for steady MHD

We now extend the results above to the case of steady MHD, formulated by (5.3.1)-(5.3.4).

Here there are two grad-div stabilization terms that arise in the analysis, but the main ideas of the

proofs for the NSE carry through to this problem as well, although more technical details arise. An

extension to time dependent MHD can be performed analogously to how the NSE was extended in

Section 3.

Theorem 5.3.1. On a fixed mesh the grad-div stabilized TH velocity and magnetic field solutions to

(5.3.1)-(5.3.4) converge to the SV velocity and magnetic field solutions with convergence order γ−1

in the energy norm, as γ →∞; if (uh, Bh) is the TH solution and (u0
h, B

0
h) is the SV solution, then

‖∇(uh − u0
h) + ‖∇(Bh −B0

h)‖ ≤ C

γ
.

Proof. Let (u0
h, p

0
h, B

0
h, λ

0
h) ∈ (V SVh , Q̃h, V

SV
h , Q̃h) denote the solution of (5.3.1)-(5.3.4) using SV

elements, (uh, ph, Bh, λh) ∈ (Vh, Qh, Vh, Qh) for the TH solution. Additionally, denote the difference

between the velocity solutions and the magnetic field solutions by ru ∈ Vh and rB ∈ Vh, so that

uh = u0
h + ru,

Bh = B0
h + rB .
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Plugging in the TH and SV solutions into (5.3.1) gives the following equations: ∀vh ∈ Vh,

b∗(uh, uh, vh) + ν(∇uh,∇vh)− sb∗(Bh, Bh, vh) + γ(∇ · uh,∇ · vh) = (f, vh), (5.3.15)

b∗(u0
h, u

0
h, vh) + ν(∇u0

h,∇vh)− sb∗(B0
h, B

0
h, vh)− (p0

h,∇ · vh) = (f, vh). (5.3.16)

Subtracting (5.3.16) from (5.3.15) gives

ν(∇ru,∇vh) + γ(∇ · uh, vh) = −b∗(u0
h, ru, vh)− b∗(ru, uh, vh)

+sb∗(Bh, rB , vh) + sb∗(rb, B
0
h, vh)− (p0

h,∇ · vh). (5.3.17)

Similarly, plugging in the TH and SV solutions into (5.3.3) gives the following two equations: ∀χh ∈

Vh,

νm(∇Bh,∇χh)− b∗(Bh, uh, χh) + b∗(uh, Bh, χh)

+γ(∇ ·Bh,∇ · χh) = (∇×G,χh), (5.3.18)

νm(∇B0
h,∇χh)− b∗(B0

h, u
0
h, χh) + b∗(u0

h, B
0
h, χh)

+(λ0
h,∇ · χh) = (∇×G,χh). (5.3.19)

Subtracting (5.3.19) from (5.3.18) results in the following equality,

νm(∇rB ,∇χh) + γ(∇ ·Bh,∇ · χh) = b∗(Bh, ru, χh) + b∗(rB , u
0
h, χh)

−b∗(u0
h, rB , χh)− b∗(ru, Bh, χh) + (λ0

h,∇ · χh). (5.3.20)

Orthogonally decompose ru =: r0
u + r′u and rB =: r0

B + r′B where r0
u, r

0
B ∈ V SVh and r′u, r

′
B ∈ Rh.

Choosing vh = r′u in (5.3.17), χh = r′B in (5.3.20) and adding the two resulting equations yields

ν‖∇r′u‖2 + γ‖∇ · r′u‖2 + νm‖∇r′B‖2 + γ‖∇ · r′2B‖2 = −b∗(u0
h, r

0
u, r
′
u)

−b∗(ru, uh, r′u) + sb∗(Bh, rB , r
′
u) + sb∗(rb, B

0
h, r
′
u)− (p0

h,∇ · r′u)

+b∗(Bh, ru, r
′
B) + b∗(rB , u

0
h, r
′
B)− b∗(u0

h, r
0
B , r

′
B)

−b∗(ru, Bh, r′B) + (λ0
h,∇ · r′B) (5.3.21)
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From (5.3.5), (5.3.6) and Lemmas 2.1 and 2.0.9, we can transform (5.3.21) to

γ
‖∇ · r′u‖2 + ‖∇ · r′B‖2

‖∇ · ru‖+ ‖∇ · rB‖
≤ CsM1M‖∇r0

u‖+ CsM1M‖∇ru‖

+sCsM2M‖∇rB‖+ sCsM2M‖∇rB‖+ ‖p0‖+ CsM2M‖∇ru‖

+CsM1M‖∇rB‖+ CsM1M‖∇r0
B‖+ CsM2M‖∇rB‖+M‖λ0

h‖. (5.3.22)

Since uh, u
0
h, Bh and B0

h are all bounded by data, ru, r
0
u, rB and r0

B are as well. Therefore,

‖∇ · r′u‖+ ‖∇ · r′B‖ ≤
C

γ
. (5.3.23)

It remains to bound ‖r0
u‖ and ‖r0

B‖. We will majorize the terms individually and then

combine the results. First, setting vh = r0
u in (5.3.15) and (5.3.16), and rearranging gives the

following

ν(∇uh,∇r0
u) = −b∗(uh, uh, r0

u) + sb∗(Bh, Bh, r
0
u) + (f, r0

u), (5.3.24)

ν(∇u0
h,∇r0

u) = −b∗(u0
h, u

0
h, r

0
u) + sb∗(B0

h, B
0
h, r

0
u) + (f, r0

u). (5.3.25)

Subtracting (5.3.25) from (5.3.24), rewriting the nonlinear terms with standard identities and re-

ducing with orthogonality properties gives

ν‖∇r0
u‖2 ≤ |b∗(u0

h, r
′
u, r

0
u)|+ |b∗(ru, uh, r0

u)|

+ |sb∗(Bh, rB , r0
u)|+ |sb∗(rB , B0

h, r
0
u)|. (5.3.26)

Choosing χh = r0
B in (5.3.18) and (5.3.19), and rearranging gives the following equalities

νm(∇Bh,∇r0
B) = b∗(Bh, uh, r

0
B)− b∗(uh, Bh, r0

B) + (∇×G, r0
B), (5.3.27)

νm(∇B0
h,∇r0

B) = b∗(B0
h, u

0
h, r

0
B)− b∗(u0

h, B
0
h, r

0
B) + (∇×G, r0

B). (5.3.28)

Subtracting (5.3.28) from (5.3.27), rewriting the nonlinear terms and reducing with orthogonality

properties gives

νm‖∇r0
B‖2 ≤ |b∗(Bh, ru, r0

B)|+ |b∗(rB , u0
h, r

0
B)|

+ |b∗(u0
h, r
′
B , r

0
B)|+ |b∗(ru, Bh, r0

B)|. (5.3.29)
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Adding (5.3.26) and (5.3.29) gives the following upper bound

ν‖∇r0
u‖2 + νm‖∇r0

B‖2 ≤ |b∗(u0
h, r
′
u, r

0
u)|+ |b∗(ru, uh, r0

u)|+ |sb∗(Bh, rB , r0
u)|

+ |sb∗(rB , B0
h, r

0
u)|+ |b∗(Bh, ru, r0

B)|+ |b∗(rB , u0
h, r

0
B)|

+ |b∗(u0
h, r
′
B , r

0
B)|+ |b∗(ru, Bh, r0

B)|. (5.3.30)

Now using Lemma 2.1, (5.3.5), (5.3.6) and the triangle inequality yields

ν‖∇r0
u‖2 + νm‖∇r0

B‖2 ≤ Cs(M1‖∇r0
u‖2 +M1‖∇r0

B‖2

+ 2sM2‖∇r′B‖‖∇r0
u‖+ 2M1‖∇r′u‖‖∇r0

u‖

+ 2M2‖∇r′u‖‖∇r0
B‖+ +2M1‖∇r′B‖‖∇r0

B‖

+ 2sM2‖∇r0
B‖‖∇r0

u‖+ 2M2‖∇r0
u‖‖∇r0

B‖). (5.3.31)

The first 2 terms may be subtracted from both sides of (5.3.31) immediately. The subsequent terms

may be handled using Young’s inequality to yield

(
ν

2
− CsM1 − 2sCsM2 − 2CsM2)‖∇r0

u‖2 + (
νm
2
− CsM1 − 2sCsM2 − 2CsM2)‖∇r0

B‖2

≤ 16ν−1s2C2
sM

2
2 ‖∇r′B‖2 + 16ν−1C2

2M
2
1 ‖∇r′u‖2

+ 16ν−1
m C2

sM
2
2 ‖∇r′u‖2 + 16ν−1

m C2
sM

2
1 ‖∇r′B‖2.

Provided that

ν
2 −CsM1 − 2sCsM2 − 2CsM2 > 0, and

νm
2 −CsM1 − 2sCsM2 − 2CsM2 > 0, (5.3.32)

it follows from the triangle inequality that

‖∇(uh − u0
h)‖+ ‖∇(Bh −B0

h)‖ ≤ C

γ
. (5.3.33)
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5.3.2 Numerical verification for steady MHD

To numerically verify the MHD convergence theory, we select the test problem with solution

u =

 cos(y)

sin(x)

 , B =

 x

−y

 , P = sin(x+ y), (5.3.34)

on the unit square with ν = νm = 1, s = 1 and f and g calculated from this information.

The mesh used was a barycenter-refined uniform triangulation of Ω, which provided a total

of 4, 324 degrees of freedom for the (P2, P1) TH computations and 6, 600 for (P2, P
disc
1 ) SV. The

results are shown in Table 5.2, and first order convergence in the H1 norm is observed for both

velocity and the magnetic field.

γ ‖uγTH − uSV ‖H1 rate ‖∇ · uγTH‖ ‖BγTH −BSV ‖H1 rate ‖∇ ·BγTH‖
0 7.052E-4 - 5.45E-4 4.293E-6 - 1.74E-6
1 4.740E-4 - 3.19E-4 2.923E-6 - 8.93E-7
10 1.729E-4 0.41 8.44E-5 1.138E-6 0.41 2.96E-7
102 2.688E-5 0.81 1.16E-5 1.813E-7 0.80 4.66E-8
103 2.860E-6 0.97 1.22E-6 1.936E-8 0.97 4.97E-9
104 2.879E-7 1.00 1.23E-7 1.947E-9 1.00 5.00E-10

Table 5.2: Convergence of the grad-div stabilized TH steady MHD solutions toward the SV steady
MHD solution, first order as γ →∞.

5.4 Extrapolating to approximate the γ =∞ solution

The previous sections verified that, provided the SV element is stable, the grad-div stabilized

TH solutions to Stokes type problems converge to the SV solution as γ →∞. However, in practice

there are limitations on how large γ may be chosen, because as γ increases the resulting linear system

becomes ill-conditioned. In this section we consider linearly and quadratically extrapolating from

grad-div stabilized TH velocity solutions found with smaller γ to approximate the SV solution in an

effort to improve mass conservation.

Let the true solutions to (5.1.1)− (5.1.2) be given by

u =

 (x4 − 2x3 + x2)(4y3 − 6y2 + 2y)

−(y4 − 2y3 + y2)(4x3 − 6x2 + 2x)

 , (5.4.1)

P = x+ y +
1

2
(cos(y)2 + sin(x)2), (5.4.2)
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on the unit square with ν = 1
100 .

Let γk (k = 1, 2 or 3) denote a distinct stabilization parameter and let (uγkh , p
γk
h ) de-

note Taylor-Hood solutions of (5.1.1)-(5.1.2) with stabilization parameters γk. Additionally, let

(uEx, pEx) denote the extrapolated solution and (u0
h, p

0
h) denote the Scott-Vogelius solution to

(5.1.1)-(5.1.2).

Computations were done on a barycenter-refined uniform triangulation of Ω, which provided

2162 degrees of freedom for the (P2, P1) TH elements and 3300 degrees of freedom for the (P2, P
disc
1 )

SV element.

The results in Table 5.3 are for linear extrapolated solutions, and and Table 5.4 summarizes

the results for quadratic extrapolated solutions. Little improvement is seen in linear extrapolation,

but a dramatic improvement is observed for quadratic.

γ1 γ2 ‖∇ · uγ1h ‖ ‖∇ · uγ2h ‖ ‖∇ · uEx‖ ‖uEx − u0
h‖H1

1 10 2.1946e-4 2.2585e-5 2.9595e-6 6.3507e-6
1 100 2.1964e-4 2.2653e-6 1.1318e-7 2.9811e-7
10 50 2.2585e-5 4.5292e-6 4.1681e-6 7.6739e-6
10 100 2.2585e-5 2.2653e-6 2.0621e-6 3.7978e-6
50 100 4.5292e-6 2.2653e-6 2.2427e-6 4.1293e-6

Table 5.3: Improved mass conservation using linear extrapolation.

γ1 γ2 γ3 ‖∇ · uEx‖H1 ‖uEX − u0
h‖H1

1 10 100 7.30832e-10 2.070203e-9
1 50 100 1.47103e-10 4.167215e-10

Table 5.4: Improved mass conservation using quadratic extrapolation
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Chapter 6

NS-Omega

This chapter studies a finite element method for an ‘α-model’ known as the NS-ω model.

Successful DNS of fluid flows described by the incompressible NSE, if possible, is expensive for

complex flows. Recently it has been found that ‘α-models’ are able to more accurately predict fluid

flows on coarser spatial and temporal discretizations than DNS [43, 44, 52, 6, 66, 50, 12, 11, 28]. The

NS-ω model is particularly attractive because the model is well-posed, conserves energy, conserves

a model helicity [46, 38], and it can be computed efficiently with unconditionally stable algorithms

[44].

The continuous model is given by

ut + (∇×DNFu)× u+∇q − ν∆u = f, (6.0.1)

∇ · u = 0, (6.0.2)

where u and f represent the same entities as they do for the NSE. The operators F and DN are the

Helmholtz filter and van Cittert approximate deconvolution operator respectively. The use of van

Cittert approximate deconvolution increases the spatial accuracy of the model. We note that the

model uses the rotational form of the NSE nonlinearity and so its Bernoulli pressure (q = p+ 1
2 |u|

2)

is more complex than the usual pressure if the convective form of the nonlinearity is used for the

NSE. Specifically, Bernoulli pressure contains a velocity component which can lead to large pressure

approximation errors in finite element discretizations, and this can in turn adversely effect the

velocity error. Using SV elements decouples the velocity and pressure error, and provides pointwise

divergence free velocity approximations.

In addition to using SV elements the finite element discretization we use for the model
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(6.0.1)-(6.0.2) also linearizes the regularized terms via Baker’s method [3]. This decouples the

momentum-mass system from the filtering and deconvolution, which makes the cost of filtering and

higher orders of deconvolution negligible in comparison to the momentum-mass solve.

6.1 A numerical scheme for NS-ω

We now are ready to present the NS-ω algorithm we study herein. The scheme uses a

trapezoidal temporal discretization, and uses a Baker-type [3] extrapolation to linearize and maintain

unconditional stability.

Algorithm 6.1.1. Given kinematic viscosity ν > 0, end-time T > 0, the time step is chosen

∆t < T = M∆t, f ∈ L∞(0, T ; (H−1(Ω))d, the initial condition u0 ∈ V , the filtering radius α > 0,

deconvolution order N ≥ 0, first find u0
h ∈ XSV

h satisfying

(u0
h, vh)− (λh,∇ · vh) = (u0, vh), ∀vh ∈ XSV

h (6.1.1)

(∇ · u0
h, rh) = 0 ∀rh ∈ QSVh , (6.1.2)

then set u−1
h := u0

h, and find (un+1
h , q

n+ 1
2

h ) ∈ ( XSV
h , QSVh ) for n = 0, 1, ...,M − 1 satisfying

1

∆t
(un+1
h − unh, vh) + ((∇×Dh

NFh(
3

2
unh −

1

2
un−1
h )× un+ 1

2

h , vh)

− (q
n+ 1

2

h ,∇ · vh) + ν(∇un+ 1
2

h ,∇vh) = (fn+ 1
2 , vh) ∀vh ∈ XSV

h , (6.1.3)

(∇ · un+1
h , rh) = 0 ∀rh ∈ QSVh . (6.1.4)

6.1.1 Unconditional stability and well-posedness

Lemma 6.1.1. Consider the NS-ω algorithm 6.1.1. A solution ulh, l = 1, . . .M , exists at each

time-step and is unique. The algorithm is also unconditionally stable: the solutions satisfy the á

priori bound:

‖uMh ‖2 + ν∆t

M−1∑
n=0

‖∇un+1/2
h ‖2 ≤ ‖u0

h‖2 +
∆t

ν

M−1∑
n=0

‖fn+1/2‖2∗. (6.1.5)

Proof. The existence of a solution unh to the scheme in Algorithm 6.1.1 follows from the Leray-

Schauder Principle [37]. The main step is deriving an á priori estimate, which can be obtained by

setting vh = u
n+1/2
h in (6.1.3). The nonlinear term in the scheme vanishes with this choice. Thus,
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for every n

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) + ν‖∇un+1/2
h ‖2 ≤ 1

2ν
‖fn+1/2‖2∗ +

ν

2
‖∇un+1/2

h ‖2,

i.e.,

1

∆t
(‖un+1

h ‖2 − ‖unh‖2) + ν‖∇un+1/2
h ‖2 ≤ 1

ν
‖fn+1/2‖2∗.

Summing from n = 0 . . .M − 1 gives the desired result.

Each time step in the scheme of Algorithm 6.1.1 only requires the solution of a linear system.

Thus, the above stability estimate also implies that solutions at each time level exist uniquely.

Remark 6.1.1. Since the kinetic energy KE(unh) := 1
2‖u

n
h‖2 and energy dissipation ε(unh) :=

ν‖∇unh‖2 of NS-ω , take the usual form, Lemma 6.1.1 implies

KE(uhM ) +
∆t

2

M−1∑
n=0

ε(uhn+1/2) ≤ KE(uh0 ) +
∆t

2ν

M−1∑
n=0

‖fn+1/2‖2∗. (6.1.6)

Thus, if ν = 0 and f = 0, KE(uhM ) = KE(uh0 ). Hence Algorithm 6.1.1 is energy conserving.

6.1.2 Convergence Analysis

Our main convergence result for the discrete NS-ω model described in Algorithm 6.1.1 is

given next.

Theorem 6.1.1 (Convergence for discrete NS-ω ). Consider the discrete NS-ω model. Let (w(t), p(t))

be a smooth, strong solution of the NSE such that the norms on the right hand side of (6.1.7)-(6.1.8)

are finite. Suppose (u0
h, p

0
h) are the V SVh and QSVh interpolants of (w(0), p(0)), respectively. Suppose

(uh, qh) satisfies the scheme (6.1.3)-(6.1.4). Then there is a constant C = C(w, p) such that

‖|w − uh|‖∞,0 ≤ F (4t, h, α) + Chk+1‖|w|‖∞,k+1 , (6.1.7)(
ν4t

M−1∑
n=0

‖∇(wn+1/2 − (un+1
h + unh)/2)‖2

)1/2

≤ F (4t, h, α) + Cν1/2(4t)2‖∇wtt‖2,0

+Cν1/2hk‖|w|‖2,k+1 , (6.1.8)
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where

F (4t, h, α) := C∗{(ν + ν−1)1/2hk‖|w|‖2,k+1

+ν−1/2hk
(
‖|w|‖24,k+1 + ‖|∇w1/2|‖24,0

)
+C(N)(∆t)2

(
‖wttt‖2,0 + ‖ftt‖2,0 + (ν + ν−1)1/2‖∇wtt‖2,0

)
+ ν−1/2(4t2 + α2N+2 + αhk + hk+1)|‖∇w1/2|‖2,0}. (6.1.9)

Remark 6.1.1. There are two important points to note from theorem. First, the velocity error does

not depend at all on the pressure error. Second, optimal accuracy can be achieved if α ≤ O(h), and

2N + 2 ≥ k, which provides a guide for parameter selection.

Proof of Theorem 6.1.1. Let

bω(u
n+1/2
h , v

n+1/2
h , χ

n+1/2
h ) := ((∇×Dh

NFh(
3

2
unh −

1

2
un−1
h ))× vn+1/2

h , χ
n+1/2
h ),

and, then by adding and subtracting terms, we can write

bω(u
n+1/2
h , v

n+1/2
h , χ

n+1/2
h ) = b(u

n+1/2
h , v

n+1/2
h , χ

n+1/2
h ) − FE(u

n+1/2
h , v

n+1/2
h , χ

n+1/2
h ),

where the linear extrapolated deconvolved filtering error FE is given by

FE(u
n+1/2
h , v

n+1/2
h , χ

n+1/2
h ) := ((∇× un+1/2

h −∇×Dh
NFh(

3

2
unh −

1

2
un−1
h ))× vn+1/2

h , χ
n+1/2
h ).

At time tn+1/2, the solution of the NSE (w, p) satisfies

(
wn+1 − wn

∆t
, vh

)
+ bω(wn+1/2, wn+1/2, vh) + ν(∇wn+1/2,∇vh)

= (fn+1/2, vh) + Intp(wn, vh), ∀vh ∈ V SVh (6.1.10)

where the pressure term disappears since V SVh is now pointwise div-free, as stated in Chapter 2.

The term Intp(wn, vh) collects the interpolation error, the above linear extrapolated deconvolved
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filtering error and the consistency error. It is given by

Intp(wn, vh) =

(
wn+1 − wn

∆t
− wt(tn+1/2), vh

)
+ ν(∇wn+1/2 − ∇w(tn+1/2),∇vh)

+bω(wn+1/2, wn+1/2, vh)− bω(w(tn+1/2), w(tn+1/2), vh)

−FE(w(tn+1/2), w(tn+1/2), vh)

+(f(tn+1/2)− fn+1/2, vh) . (6.1.11)

Subtracting (6.1.10) from (6.1.3) and letting en = wn − unh we have

1

∆t
(en+1 − en, vh) + bω(wn+1/2, wn+1/2, vh)− bω(u

n+1/2
h , u

n+1/2
h , vh)

+ ν(∇en+1/2,∇vh) = Intp(wn, vh) , ∀vh ∈ V SVh , (6.1.12)

where the pressure term of NS-ω disappears since V SVh is now pointwise div-free. Decompose the

error as en = (wn − Un)− (unh − Un) := ηn − φnh where φnh ∈ V SVh , and U is the L2 projection of w

in V SVh . Setting vh = φ
n+1/2
h in (6.1.12) we obtain

(φn+1
h − φnh, φ

n+1/2
h ) + ν4t‖∇φn+1/2

h ‖ −4t bω(u
n+1/2
h , en+1/2, φ

n+1/2
h )

−4t bω(en+1/2, wn+1/2, φ
n+1/2
h ) = (ηn+1 − ηn, φn+1/2

h ) +4tν(∇ηn+1/2,∇φn+1/2
h )

+4t Intp(wn, φh) ,

i.e.

1

2
(‖φn+1

h ‖2 − ‖φnh‖2) + ν4t‖∇φn+1/2
h ‖2 = (ηn+1 − ηn, φn+1/2

h ) +4tν(∇ηn+1/2,∇φn+1/2
h )

+4t bω(ηn+1/2, wn+1/2, φ
n+1/2
h )−4t bω(φ

n+1/2
h , wn+1/2, φ

n+1/2
h )

+4t bω(u
n+1/2
h , ηn+1/2, φ

n+1/2
h ) +4t Intp(wn, φn+1/2

h ) . (6.1.13)

We now bound the terms in the RHS of (6.1.13) individually. According to the choice of U , (ηn+1−

ηn, φ
n+1/2
h ) = 0. The Cauchy-Schwarz and Young’s inequalities give

ν4t(∇ηn+1/2,∇φn+1/2
h ) ≤ ν4t‖∇ηn+1/2‖ ‖∇φn+1/2

h ‖

≤ ν∆t

12
‖∇φn+1/2

h ‖2 + Cν∆t‖∇ηn+1/2‖2. (6.1.14)
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Lemmas 2.0.1, 2.0.10 and 2.0.12 and standard inequalities give

4t bω(ηn+1/2, wn+1/2, φ
n+1/2
h ) = 4t(∇×Dh

NFh(
3

2
ηn − 1

2
ηn−1)× wn+1/2, φ

n+1/2
h )

≤ C∆t‖∇ ×Dh
NFh(

3

2
ηn − 1

2
ηn−1)‖ ‖∇wn+1/2‖ ‖∇φn+1/2

h ‖

≤ C(N)∆t‖∇(
3

2
ηn − 1

2
ηn−1)‖ ‖∇wn+1/2‖ ‖∇φn+1/2

h ‖

≤ C(N)∆t(‖∇ηn‖+ ‖∇ηn−1‖) ‖∇wn+1/2‖ ‖∇φn+1/2
h ‖

≤ ν4t
12
‖∇φn+1/2

h ‖2 + C(N)4t ν−1 (‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇wn+1/2‖2 , (6.1.15)

Using (2.0.5), we get

4t bω(φ
n+1/2
h , wn+1/2, φ

n+1/2
h ) = 4t (∇×Dh

NFh(
3

2
φnh −

1

2
φn−1
h )× wn+1/2, φ

n+1/2
h )

≤ C4t
∥∥∥wn+1/2

∥∥∥
2

∥∥∥∇φn+1/2
h

∥∥∥∥∥∥∥Dh
NFh(

3

2
φnh −

1

2
φn−1
h )

∥∥∥∥
≤ C(N)4t

∥∥∥wn+1/2
∥∥∥

2

∥∥∥∇φn+1/2
h

∥∥∥ (‖φnh‖+
∥∥φn−1

h

∥∥)
≤ ν4t

12
‖∇φn+1/2

h ‖2 + C(N)4t ν−1 (‖φnh‖2 + ‖φn−1
h ‖2)‖wn+1/2‖22 . (6.1.16)

The final trilinear term requires a bit more effort. Begin by splitting the first entry of this term by

adding and subtracting wn+1/2, followed by rewriting the resulting error term as pieces inside and

outside of the finite element space.

4tbω(u
n+1/2
h , ηn+1/2, φ

n+1/2
h ) = 4tbω(ηn+1/2, ηn+1/2, φ

n+1/2
h )

+4tbω(φ
n+1/2
h , ηn+1/2, φ

n+1/2
h ) +4tbω(wn+1/2, ηn+1/2, φ

n+1/2
h ). (6.1.17)

We bound each of the terms on the right hand side of (6.1.17) using the same inequalities and

lemmas as above:

4tbω(ηn+1/2, ηn+1/2, φ
n+1/2
h )

≤ 4t‖∇ ×Dh
NFh(

3

2
ηn − 1

2
ηn−1)‖‖∇ηn+1/2‖‖∇φn+1/2

h ‖

≤ C(N)4t‖∇(
3

2
ηn − 1

2
ηn−1)‖‖∇ηn+1/2‖2‖∇φn+1/2

h ‖

≤ ν4t
24
‖∇φn+1/2

h ‖2 + C(N)4tν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇ηn+1/2‖2 , (6.1.18)
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4tbω(φ
n+1/2
h , ηn+1/2, φ

n+1/2
h ) = 4t(∇×Dh

NFh(
3

2
φnh −

1

2
φn−1
h )× ηn+1/2, φ

n+1/2
h )

≤ 4t|(φn+1/2
h × ηn+1/2,∇×Dh

NFh(
3

2
φnh −

1

2
φn−1
h ))|

≤ 4t|(φn+1/2
h · ∇ηn+1/2, Dh

NFh(
3

2
φnh −

1

2
φn−1
h ))|

+4t|(ηn+1/2
h · ∇φn+1/2, Dh

NFh(
3

2
φnh −

1

2
φn−1
h ))|

≤ C(N)4t
∥∥∥∇ηn+1/2

h

∥∥∥∥∥∥∇φn+1/2
∥∥∥ ∥∥∥∥3

2
φnh −

1

2
φn−1
h

∥∥∥∥1/2 ∥∥∥∥∇(
3

2
φnh −

1

2
φn−1
h ))

∥∥∥∥1/2

≤ C(N)h−1/24t
∥∥∥∇ηn+1/2

h

∥∥∥∥∥∥∇φn+1/2
∥∥∥ ∥∥∥∥3

2
φnh −

1

2
φn−1
h

∥∥∥∥
≤ ν4t

12
‖∇φn+1/2

h ‖2 + C(N)4t ν−1h−1 (‖φnh‖2 + ‖φn−1
h ‖2)‖∇ηn+1/2‖2 , (6.1.19)

4tbω(wn+1/2, ηn+1/2, φ
n+1/2
h )

≤ 4t‖∇ ×Dh
NFh(

3

2
wn − 1

2
wn−1)‖‖∇ηn+1/2‖‖∇φn+1/2

h ‖

≤ C(N)4t‖∇(
3

2
wn − 1

2
wn−1)‖‖∇ηn+1/2‖‖∇φn+1/2

h ‖

≤ ν4t
24
‖∇φn+1/2

h ‖2 + C(N)4tν−1(‖∇wn‖2 + ‖∇wn−1‖2)‖∇ηn+1/2‖2

≤ ν4t
24
‖∇φn+1/2

h ‖2 + C(N)4tν−1‖∇ηn+1/2‖2 . (6.1.20)

Combining (6.1.14)-(6.1.20) and summing from n = 1 to M (assuming that ‖φ0
h‖ = 0) reduces

(6.1.13) to

‖φMh ‖2 + ν4t
M−1∑
n=1

‖∇φn+1/2
h ‖2

≤ C4t{
M−1∑
n=1

Cν−1 (‖wn+1/2‖22 + h−1‖∇ηn+1/2‖2)(‖φnh‖2 + ‖φn−1
h ‖2)

+

M−1∑
n=1

(
(ν + ν−1)‖∇ηn+1/2‖2 + ν−1 (‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇wn+1/2‖2

+ν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇ηn+1/2‖2
)

+

M−1∑
n=1

|Intp(wn, φhn+1/2)| }

≤ C4t{
M−1∑
n=1

Cν−1 (‖wn+1/2‖22 + h−2‖∇ηn+1/2‖2)‖φnh‖2

+(ν + ν−1)

M−1∑
n=1

‖∇ηn+1/2‖2 + ν−1
M−1∑
n=0

‖∇ηn‖2‖∇wn+1/2‖2

+ν−1
M∑
n=0

‖∇ηn‖4 +

M−1∑
n=1

|Intp(wn, φhn+1/2)| }. (6.1.21)
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Now, we continue to bound the terms on the RHS of (6.1.21). We have that

C4t(ν + ν−1)

M−1∑
n=1

‖∇ηn+1/2‖2 ≤ C4t(ν + ν−1)

M∑
n=0

‖∇ηn‖2

≤ C4t(ν + ν−1)

M∑
n=0

h2k|wn|2k+1

≤ C(ν + ν−1)h2k‖|w|‖22,k+1, (6.1.22)

and similarly,

C4tν−1
M∑
n=0

‖∇ηn‖4 ≤ 4tCν−1
M∑
n=0

h4k|wn|4k+1

≤ Cν−1h4k‖|w|‖44,k+1. (6.1.23)

For the term

C4tν−1
M−1∑
n=0

‖∇ηn‖2‖∇wn+1/2‖2 ≤ C4tν−1h2k
M∑
n=0

|wn|2k+1‖∇wn+1/2‖2

≤ Cν−1h2k
(
‖|w|‖44,k+1 + ‖|∇w1/2|‖44,0

)
. (6.1.24)

We now bound the terms in Intp(wn, φ
n+1/2
h ). Using Cauchy-Schwarz and Young’s inequalities, and

Lemmas 2.0.4, 2.0.10 and 2.0.12 and the regularity assumptions on w,

(
wn+1 − wn

∆t
− wt(tn+1/2), φ

n+1/2
h

)
≤ 1

2
‖φn+1/2

h ‖2 +
1

2
‖w

n+1 − wn

∆t
− wt(tn+1/2)‖2

≤ 1

2
‖φn+1

h ‖2 +
1

2
‖φnh‖2 +

1

2

(∆t)3

1280

∫ tn+1

tn

‖wttt‖2 dt , (6.1.25)

(f(tn+1/2)− fn+1/2, φ
n+1/2
h )

≤ 1

2
‖φn+1/2

h ‖2 +
1

2
‖f(tn+1/2)− fn+1/2‖2

≤ 1

2
‖φn+1

h ‖2 +
1

2
‖φnh‖2 +

(∆t)3

48

∫ tn+1

tn

‖ftt‖2 dt , (6.1.26)
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ν(∇wn+1/2 − ∇w(tn+1/2),∇φn+1/2
h )

≤ ε2ν ‖∇φn+1/2
h ‖2 + C ν‖∇wn+1/2 − ∇w(tn+1/2)‖2

≤ ε2ν ‖∇φn+1/2
h ‖2 + C ν

(∆t)3

48

∫ tn+1/2

tn

‖∇wtt‖2 dt , (6.1.27)

bω(wn+1/2, wn+1/2, φ
n+1/2
h )− bω(w(tn+1/2), w(tn+1/2), φ

n+1/2
h )

= bω(wn+1/2 − w(tn+1/2), wn+1/2, φ
n+1/2
h ) + bω(w(tn+1/2), wn+1/2 − w(tn+1/2), φ

n+1/2
h )

≤ C ‖∇ ×Dh
NFh(

3

2
(wn − w(tn))− 1

2
(wn−1 − w(tn−1)))‖ ‖∇φn+1/2

h ‖ ‖∇wn+1/2‖

+C ‖∇ ×Dh
NFh(

3

2
w(tn)− 1

2
w(tn−1))‖ ‖∇φn+1/2

h ‖ ‖∇wn+1/2 −∇w(tn+1/2)‖

≤ 0 + C(N) ‖∇(
3

2
w(tn)− 1

2
w(tn−1))‖ ‖∇φn+1/2

h ‖ ‖∇wn+1/2 −∇w(tn+1/2)‖

≤ C(N) ν−1
(
‖∇w(tn)‖2 + ‖∇w(tn−1)‖2

) (∆t)3

48

∫ tn+1

tn

‖∇wtt‖2 dt + ε3ν‖∇φn+1/2
h ‖2

≤ ε3ν‖∇φn+1/2
h ‖2 + C(N) ν−1 (∆t)3

48

∫ tn+1

tn

‖∇wtt‖2 dt . (6.1.28)

Next we will bound the linear extrapolated deconvolved filtering error FE using

w(tn+1/2)− (
3

2
w(tn)− 1

2
w(tn−1)) = O(4t2) (6.1.29)

and Lemma 2.0.13 as well. Thus,

FE ≤
∣∣∣∣(∇× w(tn+1/2)−∇×Dh

NFh(
3

2
w(tn)− 1

2
w(tn−1))× w(tn+1/2), φ

n+1/2
h )

∣∣∣∣
≤ C‖∇ × (w(tn+1/2)−Dh

NFh(
3

2
w(tn)− 1

2
w(tn−1))‖‖∇w(tn+1/2)‖‖∇φn+1/2

h ‖

≤ ε4ν‖∇φn+1/2
h ‖2 + Cν−1‖∇w(tn+1/2)‖2‖∇ × (w(tn+1/2)−Dh

NFh(
3

2
w(tn)− 1

2
w(tn−1))‖2

≤ ε4ν‖∇φn+1/2
h ‖2 + Cν−1‖∇w(tn+1/2)‖2

(
‖∇(I −Dh

NFh)w(tn+1/2)‖2

+ ‖∇Dh
NFh(w(tn+1/2)− (

3

2
w(tn)− 1

2
w(tn−1)))‖2

)
≤ ε4ν‖∇φn+1/2

h ‖2 + C(N)ν−1(4t4 + α4N+4 + α2h2k + h2k+2)‖∇w(tn+1/2)‖2. (6.1.30)
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Combine (6.1.25)-(6.1.30) to obtain

∆t

M−1∑
n=1

|Intp(wn, φn+1/2
h )|

≤ ∆t C

M−1∑
n=0

‖φn+1
h ‖2 + (ε1 + ε2 + ε3 + ε4)∆t ν

M−1∑
n=1

‖∇φn+1/2
h ‖2

+C(N)(∆t)4
(
‖wttt‖22,0 + ‖ftt‖22,0 + (ν + ν−1)‖∇wtt‖22,0

)
+ ν−1(4t4 + α4N+4 + α2h2k + h2k+2)|‖∇w1/2|‖22,0. (6.1.31)

Let ε1 = ε2 = ε3 = ε4 = 1/12 and with (6.1.22)-(6.1.24), (6.1.31), from (6.1.21) we obtain

‖φMh ‖2 + ν4t
M−1∑
n=1

‖∇φn+1/2
h ‖2

≤ C4t
M−1∑
n=1

Cν−1 (‖∇wn+1/2‖2 + h2k−1)‖φnh‖2 + C∆t

M∑
n=1

‖φnh‖2

+C(ν + ν−1)h2k‖|w|‖22,k+1 + Cν−1h4k‖|w|‖44,k+1 + Cν−1h2k
(
‖|w|‖44,k+1 + ‖|∇w1/2|‖44,0

)
+C(N)(∆t)4

(
‖wttt‖22,0 + ‖ftt‖22,0 + (ν + ν−1)‖∇wtt‖22,0

)
+ ν−1(4t4 + α4N+4 + α2h2k + h2k+2)|‖∇w1/2|‖22,0. (6.1.32)

Hence, with k ≥ 1, from Gronwall’s Lemma (see Lemma 2.0.5), we have

‖φMh ‖2 + ν4t
M−1∑
n=1

‖∇φn+1/2
h ‖2

≤ C∗{(ν + ν−1)h2k‖|w|‖22,k+1 + ν−1h4k‖|w|‖44,k+1 + ν−1h2k
(
‖|w|‖44,k+1 + ‖|∇w1/2|‖44,0

)
+C(N)(∆t)4

(
‖wttt‖22,0 + ‖ftt‖22,0 + (ν + ν−1)‖∇wtt‖22,0

)
+ ν−1(4t4 + α4N+4 + α2h2k + h2k+2)|‖∇w1/2|‖22,0}, (6.1.33)

where C∗ = C exp(Cν−1T ).

Estimate (6.1.7) then follows from the triangle inequality and (6.1.33).

To obtain (6.1.8), we use (6.1.33) and

‖∇
(
w(tn+1/2)− (uhn+1 + uhn)/2

)
‖2

≤ ‖∇(w(tn+1/2)− wn+1/2)‖2 + ‖∇ηn+1/2‖2 + ‖∇φn+1/2
h ‖2

≤ (4t)3

48

∫ tn+1

tn

‖∇wtt‖2 dt + Ch2k|wn+1|2k+1 + Ch2k|wn|2k+1 + ‖∇φn+1/2
h ‖2 .
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6.1.3 An alternative choice of α

It is common in ‘α-models’ for the choice of filtering radius parameter to be chosen on the

order of the meshwidth, α = O(h). From the preceding error analysis, it can be seen that such a

choice of α is the largest it can be without creating suboptimal asymptotic accuracy. Although this

provides some guidance on the choice of α, finding an optimal α on a particular fixed mesh still may

require some tuning. We describe now a connection between NS-ω and the velocity-vorticity-helicity

(VVH) formulation of the NSE [60], that suggests an alternative choice of α that may aid in this

process.

NS-ω can be considered as a rotational form NSE formulation where the vorticity term is

handled by other equations, which for NS-ω is the regularization equations. Such a formulation

is quite similar to a velocity-vorticity method, where the vorticity comes directly from solving the

vorticity equation. In particular, consider the numerical method devised in [60] for the VVH NSE

formulation:

Algorithm 6.1.2. Step 1. Given un, un−1, wn and u∗ = 3
2u

n − 1
2u

n−1, find wn+1 and heln+1/2

from

wn+1 − wn

4t
− ν4wn+1/2 + 2D(wn+1/2)u∗ −∇heln+1/2 = ∇× fn+1/2 (6.1.34)

∇ · wn+1 = 0 (6.1.35)

wn+1 = ∇× (2un − un−1) on ∂Ω (6.1.36)

Step 2. Given un, wn and wn+1, find un+1 and Pn+1/2

un+1 − un

4t
− ν4un+1/2 + wn+1/2 × un+1/2 −∇Pn+1/2 = fn+1/2 (6.1.37)

∇ · un+1 = 0 (6.1.38)

un+1 = φ on ∂Ω (6.1.39)

where φ is the Dirichlet boundary condition function and D(·) denotes the deformation tensor, i.e.

D(v) = (∇v)+(∇v)T

2 , u,w denote velocity and vorticity, P is the Bernoulli pressure and hel is helical

density.

If f is irrotational and we remove the nonlinear term from the vorticity equation, this system

is analogous the NS-ω scheme herein if we identify helical density with the Lagrange multiplier λ

corresponding to the incompressibility of the filtered velocity, and ν∆t with α2, i.e. α =
√
ν∆t.
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Choosing an optimal filtering radius α is certainly problem dependent, and by no means are we

suggesting this choice is always optimal. However, our numerical experiments show it can be a good

starting point for choosing α when using NS-ω .

6.2 Numerical experiments

In this section we present several numerical experiments that demonstrate the effectiveness

of the numerical method studied herein. The first two experiments are for benchmark tests of channel

flow over a step and around a cylinder, respectively, and both show excellent results. The third and

fourth tests are done with SV elements and TH elements, and compare solutions for a problem with

known analytical solution and the cylinder problem.

6.2.1 Experiment 1: Channel flow over a forward-backward facing step

Our first numerical experiment is for the benchmark 2d problem of channel flow over a

forward-backward facing step. The domain Ω is a 40x10 rectangle with a 1x1 step 5 units into the

channel at the bottom. The top and bottom of the channel as well as the step are prescribed with

no-slip boundary conditions, and the sides are given the parabolic profile (y(10 − y)/25, 0)T . We

use the initial condition of u0 = (y(10 − y)/25, 0)T inside Ω, and run the test to T = 40. For a

chosen viscosity ν = 1/600, it is known that the correct behavior is for an eddy to form behind the

step, grow, detach from the step to move down the channel, and a new eddy forms. For a more

detailed description of the problem, see [25, 31]. The eddy formation and separation present in this

test problem is part of a complex flow structure, and its capture is critical for an effective fluid flow

model. Moreover, a useful fluid model will correctly predict this behavior on a coarser mesh than

can a direct numerical simulation of the NSE.

For the following tests, we computed Algorithm 6.1.1 with (P2, P
disc
1 ) SV elements on a

barycenter-refined mesh, yielding 14,467 total degrees of freedom, with deconvolution order N = 1,

and varying α. For comparison, we also directly compute the (linearized) NSE (α = N = 0). We

compute first with timestep ∆t = 0.05, and the solutions at T = 40 are shown in Figure 6.1. Several

interesting observations can be made. First, we note that the optimal choice of α appears to be

near α =
√
ν∆t, as this is the only solution to predict a smooth flow field and eddies forming and

detaching behind the step. For the the NSE (α = 0), a smooth flow field is predicted; however, the

eddies behind the step appear to be stretching instead of detaching. Larger values of α, including

the common choice of the average element width α = h, give increasingly worse solutions. This is
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somewhat counterintuitive, as α is a filtering radius that is supposed to regularize and thus smooth

oscillations. A closer examination reveals that the oscillations are arising from an inability of the

more regularized models to resolve the flow at the top left corner of the step, where the flow near

the bottom of the channel is forced up to intersect with the free stream.

To test the scaling of optimal α with ∆t, we compute with the same data, but with timesteps

∆t = 0.01 and 0.025, with parameter α =
√
ν∆t. The results at T = 40 are shown in Figure 6.2,

and results are good in both cases. However, for the smaller timestep, we see the eddies stretching

instead of detaching. This is not surprising, as one should expect some h-dependence on the choice

of α.

6.2.2 Experiment 2: Channel flow around a cylinder

The benchmark problem of 2d channel flow around a cylinder has been studied in numerous

works, e.g. [67, 30, 34, 42], and is well documented in [67]. The domain is the rectangle [0, 2.2] ×

[0, 0.41] representing the channel with flow in the positive x direction, with a circle radius 0.05

centered at (0.2, 0.2) representing the cylinder. No slip boundary conditions are prescribed on the

top and bottom of the channel as well as on the cylinder, and the time dependent inflow and outflow

velocity profiles are given by

u(0, y, t) = u(2.2, y, t) =

[
6

0.412
sin(πt/8)y(0.41− y) , 0

]T
, 0 ≤ y ≤ 0.41.

The forcing function is set to zero, f = 0, and the viscosity at ν = 0.001, providing a time dependent

Reynolds number, 0 ≤ Re(t) ≤ 100. The initial condition is u = 0, and we compute to final time

T = 8 with time-step ∆t = 0.005. An accurate approximation of this flow’s velocity field will show

a vortex street forming behind the cylinder by t = 4, and a fully formed vortex street by t = 7.

We test the algorithm with α = h and α =
√
ν∆t, on a barycenter refined mesh that provides

26,656 degrees of freedom for (P2, P
disc
1 ) SV elements, and again find that α =

√
ν∆t provides a

better solution than α = h. These results are shown for t = 7 in Figure 6.3. The α =
√
ν∆t solution

agrees with documented DNS results [8, 42], but the α = h solution at t = 7 is observed to be

incorrect, as it does not fully resolve the wake, and its speed contours show it gives a much different

(and thus incorrect) solution behind the cylinder.
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Figure 6.1: Shown above are the T = 40 SV solutions as velocity streamlines over speed contours
for the step problem from Experiment 1. Shown are the NSE (top) which is somewhat underresolved
on this mesh as the eddies are not fully detaching, NS-ω with α =

√
ν∆t (second from top) which

agrees with the known true solution, NS-ω with α = 0.3 (third from top) which has oscillations
present in the speed contours, and NS-ω with α = h = 0.6 (bottom) which is a poor approximation.
All of the solutions are pointwise divergence-free.
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NS-ω, ∆t = 0.025, α =
√
ν∆t
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Figure 6.2: Shown above are the T = 40 SV solutions as velocity streamlines over speed contours for
the step problem from Experiment 1, with parameter chosen as α =

√
ν∆t, for varying timesteps.
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Figure 6.3: The above pictures show the velocity fields and speed contours at t = 7 using SV
elements with α = h (top) and α =

√
ν∆t (bottom). The α = h solution is under-resolved, as it

loses resolution of the vortex street, and its speed contours are inaccurate. The α =
√
ν∆t solution

captures the entire wake, and its speed contours agree well with the known solution.
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6.2.2.1 Comparison to TH element solution

Using the same problem data as Experiment 2 above, we also compute using (P2, P1) TH

elements, with α =
√
ν∆t (which gave about the same answer as for α = h). Since this element pair

is widely used and is closely related to SV elements (they differ only in the pressure space being

continuous or not), a comparison is of interest. Since TH uses a continuous pressure space, with the

same mesh the total degrees of freedom is 17,306. All of problem data is kept the same, and results

are shown in Figures 6.4 and 6.5. In Figure 6.4, we observe that the TH solution is much worse

than the SV solution shown in Figure 6.3; the TH solution fails to resolve the important behavior

behind the cylinder. Figure 6.5 shows mass conservation versus time for the TH and SV solutions.

As expected, the SV solution is divergence-free up to machine precision. The mass conservation

offered by the TH solution is very poor.

It is not surprising that the TH solution is much worse than the SV solution. It was

shown in [42] that for the rotational form NSE, the Bernoulli pressure error can be large enough

to dramatically increase velocity error for this problem. Since NS-ω is also rotational form, this

same effect can be expected. However, for the SV solution, as shown herein, the velocity error is

independent of the pressure error. Thus even though pressure error may be large, it has no adverse

effect on the velocity error, leaving the good solution seen in Figure 6.3.

TH elements, α =
√
ν∆t
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Figure 6.4: The above picture show the t = 7 solution using TH elements, as a velocity vector field
and speed contours. This solution is incorrect, as it fails to capture any wake behind the cylinder.

6.2.3 Experiment 3: Effect of pressure error on velocity error

In this experiment, we investigate more closely the effect of the pressure error on the velocity

error, which caused a dramatic difference between SV and TH solutions in the above experiment of

flow around a cylinder. The error analysis in Section 6.1.2 showed that in Algorithm 6.1.1, which uses

SV elements, the velocity error is not affected by the pressure error. If TH elements are used, however,
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Figure 6.5: Shown above are the plots of the L2 norms of the divergence of the velocity solutions
versus time, for the SV and TH solutions, both with α =

√
ν∆t = 0.0022.

As expected, the SV solution is incompressible to near machine precision. The TH solution, however,
gives very poor mass conservation.

then the energy error of the velocity can be shown to depend on C(ν−1)∆t
∑M−1
n=0 infrh∈QTHh ‖q−rh‖,

e.g. [44], although the scaling by C(ν−1) of this term can be reduced by using grad-div stabilization

[61, 42, 52].

To better demonstrate this effect, we compute Algorithm 6.1.1 with both SV and TH ele-

ments, for a series of simple test problems with increasing pressure complexity and the same velocity

solution. On the domain, Ω = (0, 1)2 and 0 ≤ t ≤ 0.1 = T , we choose

u = (1 + 0.01t)

 cos(y)

sin(x)

 , p = x+ y + sin(n(x+ y)),

which will solve the NSE with an appropriate function f .

Solutions are approximated to this problem on a quasi-uniform barycenter-refined mesh that

provides 12,604 degrees of freedom with (P2, P
disc
1 ) SV elements (7,258 for velocity and 5,364 for

pressure) and 8,182 degrees of freedom with (P2, P1) TH (7,258 for velocity and 924 for pressure),

kinematic viscosity is set to be ν = 0.01, timestep ∆t = 0.025, α =
√
ν∆t = 0.0158, N = 1, and the

parameter for pressure complexity n = 0, 1, 2, 3. The results are shown in Table 6.1, and as expected

the error in the SV velocity solution is unaffected by the increase in pressure complexity. However,

the TH velocity solution significanty loses accuracy. Also included in the table is the size of the

velocity divergence, measured in L2(0, T ;L2(Ω)). As expected, for the SV solution, near machine

epsilon is found for each n, but for TH, the quantity is non-negligible and gets significantly worse

with increasing pressure complexity.
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n
∥∥uNSE − uSVh ∥∥

2,1

∥∥∇ · uSVh ∥∥
2,0

∥∥uNSE − uTHh ∥∥
2,1

∥∥∇ · uTHh ∥∥
2,0

0 7.332E-5 1.106E-14 3.075E-3 2.775E-3
1 7.332E-5 1.167E-14 5.315E-3 4.763E-3
2 7.332E-5 1.102E-14 1.716E-2 1.533E-2
3 7.330E-5 8.724E-15 3.584E-2 3.235E-2

Table 6.1: Errors in velocity and divergence for Experiment 1 for SV and TH elements used with
Algorithm 6.1.1.
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Chapter 7

Leray-deconvolution for MHD

In this chapter we study the Leray-deconvolution model for the MHD. We prove conservation

laws for the continuous model, well-posedness, and study limiting behavior as α → 0 and N → ∞.

The model is studied in the context of periodic boundary conditions, which are not physically

recognized, but restricting to periodic boundary conditions is an important first step in model

development. Extensions to homogenous Dirichlet boundary conditions for the velocity (and the

regularized velocity) would work in the same way, but such a boundary condition for the regularized

velocity is likely not appropriate. To date the correct treatment of other types of boundary conditions

for the velocity and the regularized velocity remains an open problem [45].

7.0.4 Error, Existence, and Uniqueness of the Continuous Model

The analytical study of the MHD Leray-deconvolution models begins by establishing exis-

tence and uniqueness of solutions and an energy balance. We are also interested in the consistency

error of the model.

First, we make precise the definition of the MHD Leray-deconvolution model. Let T > 0,

f,∇× g ∈ L2((0, T );H−1
p ) and u0, B0 ∈ H0

p be given. Then for α > 0 and 0 ≤ N <∞, the problem

is: find (u,B, p) satisfying

u,B ∈ L2([0, T ], H1
p ) ∩ L∞([0, T ];H0

p ), (7.0.1)

∂u

∂t
,
∂B

∂t
∈ L2([0, T ];H−1

p ), (7.0.2)

p ∈ L2([0, T ];L2
p,0), (7.0.3)

(7.0.4)
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and the following relation in a distributional sense

∂u

∂t
+HN (u) · ∇u−Re−1∆u+∇P − sHN (B) · ∇B = f, (7.0.5)

∂B

∂t
+HN (u) · ∇B −Re−1

m ∆B −HN (B) · ∇u = ∇× g, (7.0.6)

u(x, 0) = u0, (7.0.7)

B(x, 0) = B0. (7.0.8)

Before we study the well-posedness of the model we study the accuracy and show that as

α→ 0 the asymptotic consistency error is O(α2N+2). This is done by rearranging the MHD so that

the Leray-α deconvolution model appears on the left, and the residual of the true solution of the

MHD in the model on the right. Rearranging gives

∂u

∂t
+HN (u) · ∇u−Re−1∆u+∇P − sHN (B) · ∇B − f = ∇ · [HN (u)u− uu]

+s∇ · [BB −HN (B)B], (7.0.9)

∂B

∂t
+HN (u) · ∇B −Re−1

m ∆B −HN (B) · ∇u−∇× g = ∇ · [HN (u)B − uB]

+∇ · [Bu−HN (B)u]. (7.0.10)

Thus the error tensors in (7.0.9) and (7.0.10), τ1, and τ2 respectively are given by

τ1 := HN (u)u− uu+ sBB −HN (B)B, (7.0.11)

τ2 := HN (u)B − uB +Bu−HN (B)u. (7.0.12)

Adding (7.0.9) and (7.0.10) we see that the MHD Leray-α deconvolution model’s consistency

error tensor, τ , is

τ := τ1 + τ2

Analysis of modeling error for various models utilizing deconvolution [5, 16, 40, 41], has shown that

the error is actually driven by τ rather than ∇ · τ .

Theorem 7.0.1. The consistency error of the MHD Leray-deconvolution with order N is O(α2N+2).

That is

∫
Ω

|τ |dx ≤ α2N+2
(
‖∆N+1(−α2∆ + 1)−(N+1)u‖‖u‖+ s‖∆N+1(−α2∆ + 1)−(N+1)B‖‖B‖

)
+α2N+2

(
‖∆N+1(−α2∆ + 1)−(N+1)u‖‖B‖+ ‖∆N+1(−α2∆ + 1)−(N+1)B‖‖u‖

)
.
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Proof. We rewrite (7.0.11) and (7.0.12) to get

τ1 = (HN (u)− u)u+ s(B −HN (B))B, (7.0.13)

τ2 = (HN (u)− u)B + (B −HN (B))u. (7.0.14)

Integrating |τ | over Ω, using Cauchy-Schwarz, and Lemma 2.0.11 gives

∫
Ω

|τ |dx ≤ α2N+2
(
‖∆N+1FN+1u‖‖u‖+ s‖∆N+1FN+1B‖‖B‖

)
α2N+2

(
‖∆N+1FN+1u‖‖B‖+ ‖∆N+1FN+1B‖‖u‖

)
. (7.0.15)

Substituting in for the definition of the filter finishes the proof.

Theorem 7.0.2. Let α ≥ 0 and let N ≥ 0. Assume u0, B0 ∈ H0
p and f,∇×g ∈ L2([0, T ];H0

p ). Then

the MHD Leray-deconvolution model admits a unique solution (u,B, p), with u,B ∈ L∞([0, T ];H1
p )∩

L2([0, T ];H2
p ). The solution satisfies the integral relation ∀v, χ ∈ V

∫ T

0

(
d

dτ
u(τ), v)dτ −Re−1

∫ T

0

(∇u(τ),∇v)dτ +

∫ T

0

(HNu(τ) · ∇u(τ), v)dτ

−s
∫ T

0

(HNB(τ) · ∇B(τ), v)dτ =

∫ T

0

(f(τ), v)dτ,(7.0.16)∫ T

0

(
d

dτ
B(τ), χ)−Re−1

∫ T

0

(∇B(τ),∇χ)dτ +

∫ T

0

(HNu(τ) · ∇B(τ), χ)dτ

−
∫ T

0

(HNB(τ) · ∇u(τ), χ)dτ =

∫ T

0

(∇× g(τ), χ)dτ.(7.0.17)

Further, the solution satisfies the regularity

u,B ∈ L∞([0, T ];H1
p ) ∩ L2([0, T ];H2

p ), (7.0.18)

conserves energy

1

2
‖u(t)‖2 +

s

2
‖B(t)‖2 +Re−1

∫ t

0

∫
Ω

‖u‖21dxdτ + sRe−1
m

∫ t

0

∫
Ω

‖B‖21dxdτ

=
1

2
‖u0‖2 +

s

2
‖B0‖2 +

∫ t

0

∫
Ω

(f, u)dxdτ + s

∫ t

0

∫
Ω

(∇× g,B)dxdτ, (7.0.19)

and conserves cross helicity,

(u(T ), B(T )) +

∫ T

0

(Re−1 +Re−1
m )(∇u,∇B) = (u0, B0) +

∫ T

0

(f,B) +

∫ T

0

(∇× g, u). (7.0.20)
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Proof. We prove existence following the Galerkin method, which makes use of the spaces

D(Ω) := {u ∈ C∞(Ω) : u is periodic on ∂Ω},

V := {u ∈ D(Ω) : ∇ · u = 0},

H := the closure of V in L2, and

V := the closure of V in H1.

The space V is separable and we choose the basis for V to be the eigenfunctions of the Stokes

operator, A, which we will denote by {wi}∞i=1. We denote the orthogonal projection operator from

H onto the space spanned by w1, w2, ..., wm by Pm. The Galerkin system of order m corresponding

to (7.0.5)-(7.0.8) is thus

d

dt
um +Re−1Aum + PmHNum · ∇um − sPmHNBm · ∇Bm = Pmfm, (7.0.21)

d

dt
Bm +Re−1ABm + PmHNum · ∇Bm − PmHNBm · ∇um = Pm∇× gm, (7.0.22)

um(0) = Pmu0, (7.0.23)

Bm(0) = PmB0. (7.0.24)

Classical results ensure the existence of solutions to the Galerkin system for any finite m on some

interval [0, tm], and that Pmu0 → u0 as m→∞ (see for example [71, 70, 72] ). Our goal is to derive

a priori estimates for the Galerkin system that will ensure tm = T , and allow us to pass limits as

m→∞ using the Aubion-Lions Lemma.

We begin deriving the estimates by multiplying (7.0.21) by um, and multiplying (7.0.22) by

Bm to see

(
d

dt
um, um) +Re−1‖A 1

2um‖2 − sPm(HNBm · ∇Bm, um) = (Pmfm, um), (7.0.25)

(
d

dt
Bm, Bm) +Re−1

m ‖A
1
2Bm‖2 − Pm(HNBm · ∇um, Bm) = (Pm∇× gm, Bm). (7.0.26)

Multiplying (7.0.26) by s, adding the result to (7.0.25), and reducing gives

(
d

dt
um, um) + s(

d

dt
Bm, Bm) +Re−1‖A 1

2um‖2 + sRe−1
m ‖A

1
2Bm‖2

= (Pmfm, um) + s(Pm∇× gm, Bm). (7.0.27)
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Integrating (7.0.27) from 0 to s, and standard inequalities gives

‖um(s)‖2 + ‖Bm(s)‖2

≤ ‖Pmu0‖+ ‖PmB0‖+ 2Re

∫ s

0

‖f(τ)‖2V ′dτ + 2Rem

∫ s

0

‖∇ × g(τ)‖2V ′dτ

≤ ‖u0‖+ ‖B0‖+ 2Re

∫ s

0

‖f(τ)‖2V ′dτ + 2Rem

∫ s

0

‖∇ × g(τ)‖2V ′dτ. (7.0.28)

It now follows that

sup
s∈[0,T ]

‖um(s)‖2 ≤ ‖u0‖+ ‖B0‖+ 2Re

∫ s

0

‖f(τ)‖2V ′dτ + 2Rem

∫ s

0

‖∇ × g(τ)‖2V ′dτ, and (7.0.29)

sup
s∈[0,T ]

‖Bm(s)‖2 ≤ ‖u0‖+ ‖B0‖+ 2Re

∫ s

0

‖f(τ)‖2V ′dτ + 2Rem

∫ s

0

‖∇ × g(τ)‖2V ′dτ. (7.0.30)

Thus, the sequences um and Bm remain in a bounded set of L∞([0, T ];H). We now integrate (7.0.27)

from 0 to T to get

Re−1

∫ T

0

‖A 1
2um(τ)‖2dτ + sRe−1

m

∫ T

0

‖A 1
2Bm(τ)‖2dτ

≤ ‖u0‖2 + s‖B0‖+Re

∫ T

0

‖f(τ)‖2V ′dτ + sRem

∫ T

0

‖∇ × g(τ)‖2V ′dτ. (7.0.31)

This estimate shows the sequences um and Bm remain in a bounded set of L2([0, T ];V ).

To pass the limit as m → ∞ we use the Aubion-Lions Lemma, which requires us to derive

bounds for d
dtum and d

dtBm. Rearranging (7.0.21) and (7.0.22) gives

d

dt
um = −Re−1Aum − PmHNum · ∇um + sPmHNBm · ∇Bm + Pmfm, (7.0.32)

d

dt
Bm = −Re−1ABm − PmHNum · ∇Bm + PmHNBm · ∇um − Pm∇× gm. (7.0.33)

We argue that d
dtum and d

dtBm remain in a bounded set in L
4
3 ([0, T ];V ′). It is clear that Pmfm,

Pm∇×gm, Aum, and ABm are in L
4
3 ([0, T ];V ′). So, we argue the nonlinear terms satisfy the desired

regularity. We begin by majorizing the first nonlinear term in (7.0.32) as follows

s|PmHNBm · ∇Bm| ≤ ‖PmHNBm‖
1
2 ‖∇Bm‖

3
2

≤ C(N)‖Bm‖
1
2 ‖∇Bm‖

3
2

=⇒ s|PmHNBm · ∇Bm|
4
3 ≤ C(N)‖Bm‖‖∇Bm‖2 (7.0.34)

It now follows from the boundedness of Bm in L∞([0, T ];H), and integrating (7.0.34) from 0 to T
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that

s

∫ T

0

|PmHNBm(τ) · ∇Bm(τ)| 43 dτ ≤ C(N)

∫ T

0

‖∇Bm(τ)‖2dτ. (7.0.35)

The remaining nonlinear terms can be shown to satisfy the desired regularity similarly. Thus, we

may conclude that d
dtum and d

dtBm remain in a bounded set of L
4
3 ([0, T ];H ′).

At this point we have argued sufficient regularity to use the Aubion-Lions Lemma and show

solutions exist. However, the regularity we have established so far will not allow us to show that

solutions are unique. Nor will it allow us to show that the solutions conserve energy and cross-

helicity. These properties require more regularity of solutions and so we now establish that um and

Bm are in L∞([0, T ];V ) ∩ L2([0, T ];H2
p ). We begin deriving the estimates by multiplying (7.0.21)

by Aum, and multiplying (7.0.22) by ABm to see

d

dt
‖A 1

2um‖2 +Re−1‖Aum‖2 − sPm(HNBm · ∇Bm, Aum) = (Pmfm, Aum), (7.0.36)

d

dt
‖A 1

2Bm‖2 +Re−1
m ‖A2Bm‖2 − Pm(HNBm · ∇um, ABm) = (Pm∇× gm, ABm).(7.0.37)

Adding (7.0.36) to (7.0.37) and applying Young’s inequality gives

1

2

d

dt
‖A 1

2um‖2 +
1

2

d

dt
‖A 1

2Bm‖2 +
5Re−1

6
‖Aum‖2 +

5Re−1
m

6
‖ABm‖2

≤ CRe‖f‖2 + CRem‖∇ × g‖2 − (HNum · ∇Bm, ABm)

+ (HNBm · ∇um, ABm)− (HNum · ∇um, Aum) + s(HNBm · ∇Bm, Aum). (7.0.38)

We now bound the first nonlinear term in (7.0.38) using standard bounds on the nonlinearity and

Agmon’s inequality as follows:

|(HNum · ∇Bm, ABm)| ≤ ‖HNum‖∞‖A
1
2Bm‖‖ABm‖

≤ ‖HNum‖H2‖A 1
2Bm‖‖ABm‖. (7.0.39)

Note that the last inequality in (7.0.39) makes sense because of the regularity of u and Lemma

2.0.14. Applying Young’s inequality gives

|(HNum · ∇Bm, ABm)| ≤ CRe‖HNum‖2H2‖A
1
2Bm‖2 +

Re−1

6
‖ABm‖2. (7.0.40)
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Similar treatment of the remaining nonlinear terms of (7.0.38) and rearranging gives

1

2

d

dt
‖A 1

2um‖2 +
1

2

d

dt
‖A 1

2Bm‖2 +
Re−1

2
‖Aum‖2 +

Re−1
m

2
‖ABm‖2

≤ CRe‖f‖2 + CRem‖∇ × g‖2 + CRem‖HNum‖2H2‖A
1
2Bm‖2 + CRem‖HNBm‖2H2‖A

1
2um‖2

+ CRe‖HNum‖2H2‖A
1
2um‖2 + CRe‖HNBm‖2H2‖A

1
2Bm‖2. (7.0.41)

We now consider two cases,

Case 1: ‖A 1
2um‖2 + ‖A 1

2Bm‖2 < 1, and

Case 2: ‖A 1
2um‖2 + ‖A 1

2Bm‖2 ≥ 1.

If ‖A 1
2um‖2 + ‖A 1

2Bm‖2 < 1 then

1

2

d

dt
‖A 1

2um‖2 +
1

2

d

dt
‖A 1

2Bm‖2 ≤ CRe‖f‖2 + CRem‖∇ × g‖2

+ CRem‖HNum‖2H2 + CRem‖HNBm‖2H2 + CRe‖HNum‖2H2 + CRe‖HNBm‖2H2 . (7.0.42)

Integrating (7.0.42) from 0 to t gives

‖A 1
2um(t)‖2 + ‖A 1

2Bm(t)‖2 ≤
∫ t

0

CRe‖f(τ)‖2dτ
∫ t

0

+CRem‖∇ × g(τ)‖2dτ

+ CRem

∫ t

0

‖HNum(τ)‖2H2dτ + CRem

∫ t

0

‖HNBm(τ)‖2H2dτ

+ CRe

∫ t

0

‖HNum(τ)‖2H2dτ + CRe

∫ t

0

‖HNBm(τ)‖2H2dτ (7.0.43)

Taking a supremum over t ∈ [0, T ] ensures u,Bm ∈ L∞([0, T ];V ).

We now consider the case when ‖A 1
2um‖2 + ‖A 1

2Bm‖2 ≥ 1. Let ν∗ = max(Re,Rem). The

assumption ‖A 1
2um‖2 + ‖A 1

2Bm‖2 ≥ 1 implies

1

2

d

dt
‖A 1

2um‖2 +
1

2

d

dt
‖A 1

2Bm‖2 ≤

Cν∗max{(‖f‖2 + ‖∇ × g‖2), (‖HNum‖2H2 + ‖HNBm‖2H2)}(‖A 1
2um‖2 + ‖A 1

2Bm‖2). (7.0.44)
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Integrating from 0 to t and using Gronwalls inequality gives

‖A 1
2um(t)‖2 + ‖A 1

2Bm(t)‖2 ≤

(‖A 1
2um(0)‖2 + ‖A 1

2Bm(0)‖2) exp(

∫ t

0

Cνmax{(‖f‖2 + ‖∇× g‖2), (‖HNum‖2H2 + ‖HNBm‖2H2)}).

(7.0.45)

Thus, we have shown that um, Bm ∈ L∞([0, T ];V ). Integrating (7.0.41) from 0 to T and using

um, Bm ∈ L∞([0, T ];V ) implies um, Bm ∈ L2([0, T ];H2
p ∩V ). The Aubion-Lions Lemma implies the

existence of u,B ∈ L∞([0, T ];V ) ∩ L2([0, T ];H2
p ∩ V ) with subsequence umj and Bmj so that

umj → u weakly in L2([0, T ];D(A)),

umj → u strongly in L2([0, T ];V ),

Bmj → B weakly in L2([0, T ];D(A)), and

Bmj → B strongly in L2([0, T ];V ).

(7.0.46)

We now show the solution is unique. Assume there are two solutions (u1, B1) and (u2, B2).

The solutions satisfy

d

dt
u1 −Re−1∆u1 = −HNu1 · ∇u1 + sHNB1 · ∇B1 + f, (7.0.47)

d

dt
B1 −Re−1

m ∆B1 = −HNu1 · ∇B1 +HNB1 · ∇u1 +∇× g, (7.0.48)

d

dt
u2 −Re−1∆u2 = −HNu2 · ∇u2 + sHNB2 · ∇B2 + f, (7.0.49)

d

dt
B2 −Re−1

m ∆B2 = −HNu2 · ∇B2 +HNB2 · ∇u2 +∇× g. (7.0.50)

Let eu := u1− u2 and eb := B1−B2. Subtracting (7.0.50) from (7.0.49), and (7.0.48) from (7.0.47),

and rearranging the nonlinear terms gives

d

dt
eu −Re−1∆eu = −HNu2 · ∇eu −HNeu · ∇u1

+sHNB1 · ∇eB + sHNeB · ∇B2, (7.0.51)

d

dt
eB −Re−1

m ∆eB = −HNu2 · ∇eB −HNeu · ∇B1

+HNB1 · ∇eu +HNeB · ∇u2. (7.0.52)
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Multiplying (7.0.51) by eu, and (7.0.52) by eB , and reducing gives

1

2

d

dt
‖eu‖2 +Re−1‖∇u‖2 = −(HNeu · ∇u1, eu) + s(HNB1 · ∇eB , eu)

+s(HNeB · ∇B2, eu) (7.0.53)

1

2

d

dt
‖eB‖2 +Re−1

m ‖∇B‖2 = −(HNeu · ∇B1, eB) + (HNB1 · ∇eu, eB)

+(HNeB · ∇u2, eB). (7.0.54)

Scaling (7.0.54) by s and adding the result to (7.0.53) and reducing gives

1

2

d

dt
‖eu‖2 +

1

2

d

dt
‖eB‖2 +Re−1‖∇u‖2 +Re−1

m ‖∇B‖2 =

− (HNeu · ∇u1, eu) + (HNeB · ∇B2, eu)

− s(HNeu · ∇B1, eB) + s(HNeB · ∇u2, eB). (7.0.55)

We majorize the first nonlinear term in (7.0.55) using standard inequalities and the regularity of u1

as follows

|(HNeu · ∇u1, eu)| ≤ ‖HNeu‖‖∇u1‖‖eu‖

≤ C(N, u1, Re)‖eu‖2 +
Re−1

4
‖∇eu‖2. (7.0.56)

Similar treatment of the remaining nonlinear terms and rearranging gives

d

dt
‖eu‖2 +

d

dt
‖eB‖2 ≤ C(N, u1, u2, B1, B2, Re,Rem, s)(‖eu‖2 + ‖eB‖2). (7.0.57)

Gronwalls inequality finishes the proof of uniqueness.

Remark 7.0.1. The energy and cross-helicity balances of the model are a result of the strong con-

vergence of umj to u and Bmj to B in L2([0, T ];V ). This allows us to pass limits in the Galerkin

system which have energy and cross-helicity balances. If we tried to construct a proof similar to the

one above to show energy and cross helicity conservation for the 3d MHD the proof would fail at

(7.0.39). Thus, for the MHD Galerkin system we can only show strong convergence in L2([0, T ];H).

Hence we would not be able to pass a limit in terms like ‖∇umj‖. Instead we can only argue an

inequality using ‖∇u‖ ≤ lim infj→∞ ‖∇umj‖, and other such inequalities.
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7.0.5 Limiting behavior

Theorem 7.0.2 states that solutions to the Leray-deconvolution model exist uniquely, pro-

vided α > 0, and 0 ≤ N < ∞, and that the model conserves energy and cross helicity for ideal

MHD. Considering the model as a way to understand the MHD equations, it is natural to study

behavior of the model as α → 0 with N fixed. If N is fixed to be 0, then the model is the Leray-α

MHD model and Yu and Li [75] proved that as α → 0 there is a subsequence of solutions to the

Leray−α model which converges to a weak solution of the MHD.

Computationally, the Leray-deconvolution model is O(α2N+2 + ∆t2 + hk) accurate (see

Theorem 7.1.2). When computing with the model the filtering radius, α, is chosen to be on the

order of h, the mesh width. Thus, to improve accuracy one may either shrink α or increase N . The

first approach requires using a finer mesh, which increases the total degrees of freedom and thus

increases the runtime. However, increasing N only requires us to solve one more shifted Poisson

problem per deconvolution step. This leads one to study the behavior of the model when N → ∞

while α remains constant. This was studied by Layton and Lewandowski for the Leray-Deconvolution

model of the NSE [41].

Theorem 7.0.3. Let α > 0 be fixed, and assume that f, g ∈ L2((0, T ];H0
p (Ω)) and u0, B0 ∈ H0

p (Ω).

Let (uN , BN , p) denote the solution to (7.0.5)-(7.0.8) for N > 0. Then there exist subsequences

{uNj}j∈N of {uN}N∈N and {BNj}j∈N of {BN}N∈N as N → ∞ such that (uNj , BNj ) converge to

(u,B), the weak solutions of the MHD equations. The convergence is weak in L2((0, T ];H1
p (Ω)) and

strong in L2((0, T ];H0
p (Ω)).

Proof. This proof requires the use of the Aubion-Lions Lemma and so we must argue regular-

ity of the solutions. It follows immediately from Theorem 7.0.2 that uN and BN are bounded

in L2([0, T ];V ) ∩ L∞([0, T ];H), and that ∂
∂tuj ,

∂
∂tBj ∈ L

4
3 ([0, T ];H−1

p (Ω)). With the established

regularity we may use the Aubion-Lions Lemma to extract subsequences, which we continue to de-

note by {uj}j∈N and {Bj}j∈N, which converge to functions u and B respectively, and that u,B ∈

L2([0, T ];H1
p (Ω))∩L∞([0, T ];H0

p (Ω)) [4, 41, 72]. The convergence is strong in L2([0, T ];H0
p (Ω)) and

weak in L2([0, T ];H1
p (Ω)).
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We next verify that u,B satisfy the integral relation ∀v, χ ∈ V

∫ T

0

(
d

dτ
u(τ), v)dτ −Re−1

∫ T

0

(∇u(τ),∇v)dτ +

∫ T

0

(u(τ) · ∇u(τ), v)dτ

−s
∫ T

0

(B(τ) · ∇B(τ), v)dτ =

∫ T

0

(f(τ), v)dτ, (7.0.58)∫ T

0

(
d

dτ
B(τ), χ)−Re−1

∫ T

0

(∇B(τ),∇χ)dτ +

∫ T

0

(u(τ) · ∇B(τ), χ)dτ

−
∫ T

0

(B(τ) · ∇u(τ), χ)dτ =

∫ T

0

(∇× g(τ), χ)dτ. (7.0.59)

We now show the solutions satisfy ∀v, χ ∈ V

∫ T

0

(∂tuj , v) =

∫ T

0

Re−1(∇uj(τ),∇v)dτ −
∫ T

0

b(HNjuj(τ), uj(τ), v)dτ

+s

∫ T

0

(HNjBj(τ) · ∇Bj(τ), v)dτ +

∫ T

0

(f(τ), v)dτ,(7.0.60)∫ T

0

(∂tBj , χ) =

∫ T

0

Re−1
m (∇Bj(τ),∇χ)dτ −

∫ T

0

b(HNjuj(τ), Bj(τ), χ)dτ

+s

∫ T

0

(HNjBj(τ) · ∇uj(τ), χ)dτ +

∫ T

0

(∇× g(τ), χ)dτ.(7.0.61)

It is obvious that we may pass to limits in the linear terms, and so we restrict attention to the

nonlinear terms. For the first nonlinear term in (7.0.60) we have

∣∣∣∣∣
∫ T

0

b(HNjuj , uj , v)−
∫ T

0

b(u, u, v)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

b(HNjuj , (uj − u), v)

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

b((HNjuj − u)u, v)

∣∣∣∣∣ (7.0.62)

We majorize (7.0.62) with (2.0.11) and (2.0.13) and then apply Cauchy-Schwarz which gives

∣∣∣∣∣
∫ T

0

b(HNjuj , uj , v)−
∫ T

0

b(u, u, v)

∣∣∣∣∣
≤ C‖v‖2{

∫ T

0

‖HNjuj‖1‖(uj − u)‖+

∫ T

0

‖(HNjuj − u)‖‖u‖1}

≤ C‖v‖2{(
∫ T

0

‖HNjuj‖21)
1
2

∫ T

0

(‖uj − u‖2)
1
2

+

∫ T

0

(‖HNj (uj − u)‖2)
1
2 (

∫ T

0

(‖u‖21)
1
2 + (

∫ T

0

‖(HNju− u)‖2)
1
2

∫ T

0

(‖u‖21)
1
2 }. (7.0.63)

It follows from Lemma 2.0.14 and the strong convergence of uj to u in L2([0, T ];H0
p (Ω)) that the

RHS of (7.0.63) goes to zero as j →∞.
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The second nonlinear term in (7.0.60) is treated the same way as the first nonlinear term.

The behavior of the nonlinear terms in (7.0.61) is less clear because each have a magnetic component

and a velocity component, so, we focus on the first nonlinear term in (7.0.61):

∣∣∣∣∣
∫ T

0

b(HNjuj , Bj , χ)−
∫ T

0

(u,B, χ)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

b(HNjuj , (Bj −B), χ)

∣∣∣∣∣+

∣∣∣∣∣
∫ T

0

b((HNjuj − u), B, χ)

∣∣∣∣∣
≤ C‖χ‖2{

∫ T

0

‖HNjuj‖1‖(Bj −B)‖+

∫ T

0

‖(HNjuj − u)‖‖B‖1} (7.0.64)

The nonlinearity is now bounded the same way as before with (2.0.11), (2.0.13) and Cauchy-Schwarz.

Theorem 7.0.4. Let N ≥ 0 be fixed, and assume that f, g ∈ L2([0, T ];H−1
p (Ω)) and u0, B0 ∈ H0

p (Ω).

Let (uα, Bα, p) denote the solution to (7.0.5)-(7.0.8) for α > 0. Then there exist subsequences

{uαj}j∈N of {uα}α∈R and {Bαj}j∈N of {Bα}α∈R as α→ 0+ such that (uαj , Bαj ) converge to (u,B),

the weak solutions of the MHD equations. The convergence is weak in L2((0, T ];H1
p (Ω)) and strong

in L2((0, T ];H0
p (Ω)).

Proof. The proof of Theorem 7.0.4 follows immediately from the limiting behavior proof for the

Leray-α model for the MHD equations done in [75] and Lemma 2.0.11.

7.1 A Numerical Scheme for the Leray-deconvolution model

for MHD

In this section we present a numerical scheme for the Leray-deconvolution model of the

MHD equations. The numerical scheme is derived with a Galerkin finite element discretization in

space and a Crank-Nicolson discretization in time. We show that the method is well-posed, con-

serves energy and cross helicity, is unconditionally stable with respect to timestep, and is optimally

convergent. Additionally, we study the numerical scheme with the Scott-Vogelius (SV) element pair

which enforces strong mass and electrical charge conservation.

7.1.1 The numerical scheme

We are now ready to introduce the numerical scheme for the model (7.0.5)-(7.0.8). Following

[3, 10, 43] we have found it advantageous to linearize the scheme in a manner that maintains stability,
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asymptotic accuracy, and conservation laws. This is done by approximating the first term in the

nonlinearities with a second order accurate in time extrapolation. Let Ũnh := 3
2u

n
h − 1

2u
n−1
h and

B̃nh := 3
2B

n
h − 1

2B
n−1
h .

Algorithm 7.1.1. Assume the initial conditions are divergence free, i.e. u0
h, B0

h ∈ Vh. Then the

linearized scheme at each time step is given by, ∀(vh, χh, qh, rh) ∈ (Xh, Xh, Qh, Qh)

1

∆t
(un+1
h − unh, vh) + b(Dh

N Ũ
n
h

h
, u
n+ 1

2

h , vh) +Re−1(∇un+ 1
2

h ,∇vh)

−sb(Dh
N B̃

n
h

h
, B

n+ 1
2

h , vh)− (P
n+ 1

2

h ,∇ · vh) = (f(tn+ 1
2 ), vh), (7.1.1)

(∇ · un+1
h , qh) = 0, (7.1.2)

1

∆t
(Bn+1

h −Bnh , χh) +Re−1
m (∇Bn+ 1

2

h ,∇χh)− b(Dh
N B̃

n
h

h
, u
n+ 1

2

h , χh)

+b(Dh
N Ũ

n
h

h
, B

n+ 1
2

h , χh) + (λ
n+ 1

2

h ,∇ · χh) = (∇× g(tn+ 1
2 ), χh), (7.1.3)

(∇ ·Bn+1
h , χh) = 0. (7.1.4)

It is sufficient to maintain all the theoretical results to define u−1
h := u0

h and B−1
h := B0

h.

Here Pn+1
h := pn+1

h + s
2 |B

n+1
h |2 is a modified pressure derived from the vector identity

∆B = −∇× (∇×B) +∇(∇ ·B),

and λn+1
h := Rem∇ ·Bn+1

h is a Lagrange multiplier.

Remark 7.1.1. Extrapolating the nonlinearities in the scheme is computationally attractive as it

makes the scheme linear, and decouples the filtering and deconvolution. Thus, the velocity and

magnetic fields may be filtered independently of each other. These are fast solves when compared to

the full MHD system. Thus, the extra solves required to implement the Leray-α deconvolution model

with N = 1 do not significantly increase the run time over DNS.

Theorem 7.1.1. Assuming f,∇ × g ∈ L2((0, T ), V ′(Ω)), solutions to (7.1.1)-(7.1.4) exist at each

timestep. Further, the scheme is unconditionally stable and satisfies the a priori bound:

(
‖uMh ‖2 + s‖BMh ‖2

)
+ ∆t

M−1∑
n=0

(Re−1‖un+ 1
2

h ‖21 + sRe−1
m ‖B

n+ 1
2

h ‖21)

≤
(
‖u0

h‖2 + s‖B0
h‖2
)

+ ∆t

M−1∑
n=0

(Re‖f(tn+ 1
2 )‖V ′ + sRem‖g(tn+ 1

2 )‖2) (7.1.5)

Remark 7.1.2. Existence of solutions to (7.1.1)-(7.1.4) follows directly from the stability estimate
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and is a straightforward extension of the work done in [10]. The a priori bound can be derived from

the following energy conservation lemma by applying standard inequalities.

Lemma 7.1.1. Solutions to (7.1.1)-(7.1.4) admit the following conservation laws

• Mass conservation

∇ · unh = 0 (pointwise)

• Incompressibility of the magnetic field

∇ ·Bnh = 0 (pointwise)

• Global energy conservation

(
1

2
‖uMh ‖2 +

s

2
‖BMh ‖2

)
+ ∆t

M−1∑
n=0

(Re−1‖un+ 1
2

h ‖21 + sRe−1
m ‖B

n+ 1
2

h ‖21)

=

(
1

2
‖u0

h‖2 +
s

2
‖B0

h‖2
)

+ ∆t

M−1∑
n=0

(
(f(tn+ 1

2 ), u
n+ 1

2

h ) + s(∇× g(tn+ 1
2 ), B

n+ 1
2

h )
)

(7.1.6)

• Global cross-helicity conservation

(uMh , B
M
h ) + ∆t

M−1∑
n=0

(
(Re−1 +Re−1

m )(∇un+ 1
2

h ,∇Bn+ 1
2

h )
)

= (u0
h, B

0
h) + ∆t

M−1∑
n=0

(
(∇× g(tn+ 1

2 ), u
n+ 1

2

h ) + (f(tn+ 1
2 ), B

n+ 1
2

h )
)

(7.1.7)

Proof. To prove pointwise mass conservation and incompressibility of the magnetic field, we note

that for Scott-Vogelius elements ∇ ·Xh ⊆ Qh. Thus, we may choose qh in (7.1.2) to be un+1
h and

we may choose rh in (7.1.4) to be Bn+1
h . The results now follow.

To prove energy conservation we chose vh = u
n+ 1

2

h in (7.1.1) and χh = B
n+ 1

2

h in (7.1.3). This

annihilates the first nonlinear term in (7.1.1) as well as the pressure term. In (7.1.3), this annihilates

the second nonlinear terms and the Lagrange multiplier term. This leaves

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) +Re−1‖un+ 1
2

h ‖21 − sb(Dh
N B̃

n
h

h
, B

n+ 1
2

h , u
n+ 1

2

h )

= (f(tn+ 1
2 ), u

n+ 1
2

h ), (7.1.8)

1

2∆t
(‖Bn+1

h ‖2 − ‖Bnh‖2) +Re−1
m ‖B

n+ 1
2

h ‖21 − b(Dh
N B̃

n
h

h
, u
n+ 1

2

h , B
n+ 1

2

h )

= (∇× g(tn+ 1
2 ), B

n+ 1
2

h ). (7.1.9)
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Next, scale (7.1.9) by s, add (7.1.8) to (7.1.9), and rewrite the nonlinear term in (7.1.8) using

(2.0.11). This gives

1

2∆t
(‖un+1

h ‖2 − ‖unh‖2) +
s

2∆t
(‖Bn+1

h ‖2 − ‖Bnh‖2) +Re−1‖un+ 1
2

h ‖21

+sRe−1
m ‖B

n+ 1
2

h ‖21 = (f(tn+ 1
2 ), u

n+ 1
2

h ) + s(∇× g(tn+ 1
2 ), B

n+ 1
2

h ).

To finish the the proof of (7.1.6) we multiply by ∆t, and sum over timesteps.

To prove cross helicity is conserved, we begin by choosing vh = B
n+ 1

2

h in (7.1.1) which

annihilates the fourth and fifth terms. Next we choose χh = u
n+ 1

2

h in (7.1.3) which annihilates the

third and fifth terms. What remains is

1

∆t
(un+1
h − unh, B

n+ 1
2

h ) + b(Dh
N Ũ

n
h

h
, u
n+ 1

2

h , B
n+ 1

2

h ) +Re−1(∇un+ 1
2

h ,∇Bn+ 1
2

h )

= (f(tn+ 1
2 ), B

n+ 1
2

h ), (7.1.10)

1

∆t
(Bn+1

h −Bnh , u
n+ 1

2

h ) +Re−1
m (∇Bn+ 1

2

h ,∇un+ 1
2

h ) + b(Dh
N Ũ

n
h

h
, B

n+ 1
2

h , u
n+ 1

2

h )

= (∇× g(tn+ 1
2 ), u

n+ 1
2

h ). (7.1.11)

Adding (7.1.10) to (7.1.11) and using (2.0.11) gives

1

∆t
(un+1
h − unh, B

n+ 1
2

h ) +
1

∆t
(Bn+1

h −Bnh , u
n+ 1

2

h )

=
1

2∆t

(
(un+1
h , Bn+1

h )− (unh, B
n
h )
)

+
1

2∆t

(
(un+1
h , Bnh )− (unh, B

n+1
h )

)
+

1

2∆t

(
(Bn+1

h , un+1
h )− (Bnh , u

n
h)
)
− 1

2∆t

(
(Bn+1

h , unh)− (Bnh , u
n+1
h )

)
,

which reduces to

1

∆t

(
(un+1
h , Bn+1

h )− (unh, B
n
h )
)

+ (Re−1 +Re−1
m )(∇un+ 1

2

h ,∇Bn+ 1
2

h )

= (∇× g(tn+ 1
2 ), u

n+ 1
2

h ) + (f(tn+ 1
2 ), B

n+ 1
2

h ). (7.1.12)

The proof of (7.1.7) is completed by multiplying (7.1.12) by ∆t, and summing over timesteps.

Remark 7.1.3. If f = ∇ × g = Re−1 = Re−1
m = 0 then energy and cross helicity are exactly

conserved.

Theorem 7.1.2. Suppose (u,B) solve the 3d MHD and that u, B, f , ∇ × g satisfy the following
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regularity

u,B ∈ L∞([0, T ];Hk+1), (7.1.13)

u,B ∈ L∞([0, T ];H2N+2), (7.1.14)

ut, Bt ∈ L∞([0, T ];H1), (7.1.15)

utt, Btt ∈ L4([0, T ];H1), (7.1.16)

uttt, Bttt ∈ L2([0, T ];H−1), and (7.1.17)

ftt,∇× gtt ∈ L2([0, T ];H−1). (7.1.18)

Then the solution (uh, Bh, ph, λh) to (7.1.1)-(7.1.4) converges to the true solution with optimal rate,

‖u− uh‖2,1 + ‖B −Bh‖2,1 = O(∆t2 + hk + α2N+2).

Proof. For the analysis we assume the use of SV elements. We begin by adding identically zero

terms to the continuous MHD to get

1

∆t
(un+1 − un, vh) +Re−1(∇un+ 1

2 ,∇vh) = (f(tn+ 1
2 ), vh)

−(ut(t
n+ 1

2 ), vh) +
1

∆t
(un+1 − un, vh) +Re−1(∇un+ 1

2 ,∇vh)−Re−1(∇u(tn+ 1
2 ),∇vh)

+(Dh
N (

3

2
un − 1

2
un−1)

h

· ∇un+ 1
2 , vh)− (u(tn+ 1

2 ) · ∇u(tn+ 1
2 ), vh)

+s(B(tn+ 1
2 ) · ∇B(tn+ 1

2 ), vh)− s(Dh
N (

3

2
Bn − 1

2
Bn−1)

h

· ∇Bn+ 1
2 , vh)

−(Dh
N (

3

2
un − 1

2
un−1)

h

· ∇un+ 1
2 , vh) + s(Dh

N (
3

2
Bn − 1

2
Bn−1)

h

· ∇Bn+ 1
2 , vh), (7.1.19)

1

∆t
(Bn+1 −Bn, χh) +Re−1

m (∇Bn+ 1
2 ,∇χh) = (∇× g(tn+ 1

2 ), χh)

−(Bt(t
n+ 1

2 ), χh) +
1

∆t
(Bn+1 −Bn, χh) +Re−1

m (∇Bn+ 1
2 ,∇χh)−Re−1

m (∇B(tn+ 1
2 ),∇χh)

+(B(tn+ 1
2 ) · ∇u(tn+ 1

2 ), χh)− (Dh
N (

3

2
Bn −Bn−1)

h

· ∇un+ 1
2 , χh)

−(u(tn+ 1
2 ) · ∇B(tn+ 1

2 ), χh) + (Dh
N (

3

2
un − 1

2
un−1)

h

· ∇Bn+ 1
2 , χh)

+(Dh
N (

3

2
Bn −Bn−1)

h

· ∇un+ 1
2 , χh)− (Dh

N (
3

2
un − 1

2
un−1)

h

· ∇Bn+ 1
2 , χh). (7.1.20)
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Subtracting (7.1.19) from (7.1.1) and labeling enu := unh = un, and enB := Bnh −Bn gives

1

∆t
(en+1
u − enu, vh) +Re−1(∇en+ 1

2
u ,∇vh) =

(Dh
N (

3

2
un − 1

2
un−1)

h

· ∇un+ 1
2 , vh)− (Dh

N (
3

2
unh −

1

2
un−1
h )

h

· ∇un+ 1
2

h , vh)

+ s(Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

· ∇Bn+ 1
2

h , vh)− s(Dh
N (

3

2
Bn − 1

2
Bn−1)

h

· ∇Bn+ 1
2 , vh)

+G1(u,B, n, vh), (7.1.21)

where

G1(u,B, n, vh) := (fn+ 1
2 − f(tn+ 1

2 ), vh)− (ut(t
n+ 1

2 ), vh) +
1

∆t
(un+1 − un), vh)

+Re−1(∇un+ 1
2 ,∇vh)−Re−1(∇u(tn+ 1

2 ),∇vh)

+ (Dh
N (

3

2
un − 1

2
un−1)

h

· ∇un+ 1
2 , vh)− (u(tn+ 1

2 ) · ∇u(tn+ 1
2 ), vh)

+ s(B(tn+ 1
2 ) · ∇B(tn+ 1

2 ), vh)− s(Dh
N (

3

2
Bn − 1

2
Bn−1)

h

· ∇Bn+ 1
2 , vh). (7.1.22)

Next we decompose the velocity and magnetic errors respectively as

enu = (u(tn)−PVhu(tn))− (PVhu(tn)−unh) =: ηnu −φnh, and enB = (B(tn)−PVhB(tn))− (PVhB(tn)−

Bnh ) =: ηnB −ψnh , where PVhu(tn) and PVhB(tn) denote the L2 projection of u(tn) and B(tn) respec-

tively in Vh. Specifying vh = φ
n+ 1

2

h in (7.1.21), rearranging, and noting that (ηn+1
u − ηnu , φ

n+ 1
2

h ) = 0

gives

1

2∆t
(‖φn+1

h ‖2 − ‖φnh‖2) +Re−1‖∇φn+ 1
2

h ‖2 = Re−1(∇ηn+ 1
2

u ,∇φn+ 1
2

h )

+Dh
N (

3

2
un − 1

2
un−1)

h

· ∇un+ 1
2 , φ

n+ 1
2

h )− (Dh
N (

3

2
unh −

1

2
un−1
h )

h

· ∇un+ 1
2

h , φ
n+ 1

2

h )

+ s(Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

· ∇Bn+ 1
2

h , φ
n+ 1

2

h )− s(Dh
N (

3

2
Bn − 1

2
Bn−1)

h

· ∇Bn+ 1
2 , φ

n+ 1
2

h )

+G1(u,B, n, φ
n+ 1

2

h ). (7.1.23)
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Rewriting the explicitly written nonlinearities in (7.1.23) and reducing gives

1

2∆t
(‖φn+1

h ‖2 − ‖φnh‖2) +Re−1‖∇φn+ 1
2

h ‖2 = Re−1(∇ηn+ 1
2

u ,∇φn+ 1
2

h )

+Dh
N (

3

2
un − 1

2
un−1)

h

· ∇ηn+ 1
2

u , φ
n+ 1

2

h )− (Dh
N (

3

2
enu −

1

2
en−1
u )

h

· ∇un+ 1
2

h , φ
n+ 1

2

h )

− s(Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

· ∇en+ 1
2

B , φ
n+ 1

2

h )− s(Dh
N (

3

2
enB −

1

2
en−1
B )

h

· ∇Bn+ 1
2 , φ

n+ 1
2

h )

+G1(u,B, n, φ
n+ 1

2

h ). (7.1.24)

Next subtracting (7.1.20) from (7.1.3) gives

1

∆t
(en+1
B − enB , χh) +Re−1

m (∇en+ 1
2

B ,∇χh) =

(Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

· ∇un+ 1
2

h , χh)− (Dh
N (

3

2
Bn − 1

2
Bn−1)

h

· ∇un+ 1
2 , χh)

+ (Dh
N (

3

2
un − 1

2
un−1)

h

· ∇Bn+ 1
2 , χh)− (Dh

N (
3

2
unh −

1

2
un−1
h )

h

· ∇Bn+ 1
2

h , χh)

+G2(u,B, n, χh), (7.1.25)

where

G2(u,B, n, χh) := (∇× (gn+ 1
2 − g(tn+ 1

2 )), χh)− (Bt(t
n+ 1

2 ), χh) +
1

∆t
(Bn+1 −Bn, χh)

+Re−1
m (∇Bn+ 1

2 ,∇χh)−Re−1
m (∇B(tn+ 1

2 ),∇χh)

+ (Dh
N (

3

2
Bn −Bn−1)

h

· ∇un+ 1
2 , χh)− (B(tn+ 1

2 ) · ∇u(tn+ 1
2 ), χh)

+ (u(tn+ 1
2 ) · ∇B(tn+ 1

2 ), χh)− (Dh
N (

3

2
un − 1

2
un−1)

h

· ∇Bn+ 1
2 , χh). (7.1.26)

Choosing χh = ψ
n+ 1

2

h in (7.1.25), reducing, and rearranging yields

1

2∆t
(‖ψn+1

h ‖2 − ‖ψnh‖2) +Re−1
m ‖∇ψ

n+ 1
2

h ‖2 = Re−1
m (∇ηn+ 1

2

B ,∇ψn+ 1
2

h )

+ (Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

· ∇un+ 1
2

h , ψ
n+ 1

2

h )− (Dh
N (

3

2
Bn − 1

2
Bn−1)

h

· ∇un+ 1
2 , ψ

n+ 1
2

h )

+ (Dh
N (

3

2
un − 1

2
un−1)

h

· ∇Bn+ 1
2 , ψ

n+ 1
2

h )− (Dh
N (

3

2
unh −

1

2
un−1
h )

h

· ∇Bn+ 1
2

h , ψ
n+ 1

2

h )

+G2(u,B, n, ψ
n+ 1

2

h ). (7.1.27)
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Rewriting the nonlinear terms in (7.1.27) and reducing gives

1

2∆t
(‖ψn+1

h ‖2 − ‖ψnh‖2) +Re−1
m ‖∇ψ

n+ 1
2

h ‖2 = Re−1
m (∇ηn+ 1

2

B ,∇ψn+ 1
2

h )

− (Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

· ∇en+ 1
2

u , ψ
n+ 1

2

h )− (Dh
N (

3

2
enB −

1

2
en−1
B )

h

· ∇un+ 1
2 , ψ

n+ 1
2

h )

+ (Dh
N (

3

2
un − 1

2
un−1)

h

· ∇ηn+ 1
2

B , ψ
n+ 1

2

h ) + (Dh
N (

3

2
enu −

1

2
en−1
u )

h

· ∇Bn+ 1
2

h , ψ
n+ 1

2

h )

+G2(u,B, n, ψ
n+ 1

2

h ). (7.1.28)

Multiplying (7.1.28) by s, adding (7.1.28) and (7.1.24), and reducing with the identity (u · ∇v, w) =

−(u · ∇w, v) yields

1

2∆t
(‖φn+1

h ‖2 − ‖φnh‖2) +
s

2∆t
(‖ψn+1

h ‖2 − ‖ψnh‖2) +Re−1‖∇φn+ 1
2

h ‖2 + sRe−1
m ‖∇ψ

n+ 1
2

h ‖2

= Re−1(∇ηn+ 1
2

u ,∇φn+ 1
2

h ) + sRe−1
m (∇ηn+ 1

2

B ,∇ψn+ 1
2

h )

+Dh
N (

3

2
un − 1

2
un−1)

h

· ∇ηn+ 1
2

u , φ
n+ 1

2

h )− (Dh
N (

3

2
ηnu −

1

2
ηn−1
u )

h

· ∇un+ 1
2

h , φ
n+ 1

2

h )

+ (Dh
N (

3

2
φnh −

1

2
φn−1
h )

h

· ∇un+ 1
2

h , φ
n+ 1

2

h )− s(Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

· ∇ηn+ 1
2

B , φ
n+ 1

2

h )

− s(Dh
N (

3

2
ηnB −

1

2
ηn−1
B )

h

· ∇Bn+ 1
2 , φ

n+ 1
2

h ) + s(Dh
N (

3

2
φnh −

1

2
φn−1
h )

h

· ∇Bn+ 1
2 , φ

n+ 1
2

h )

− s(Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

· ∇ηn+ 1
2

u , ψ
n+ 1

2

h )− s(Dh
N (

3

2
ηnB −

1

2
ηn−1
B )

h

· ∇un+ 1
2 , ψ

n+ 1
2

h )

+ s(Dh
N (

3

2
ψnh −

1

2
ψn−1
h )

h

· ∇un+ 1
2 , ψ

n+ 1
2

h ) + s(Dh
N (

3

2
un − 1

2
un−1)

h

· ∇ηn+ 1
2

B , ψ
n+ 1

2

h )

+ s(Dh
N (

3

2
ηnu −

1

2
ηn−1
u )

h

· ∇Bn+ 1
2

h , ψ
n+ 1

2

h )− s(Dh
N (

3

2
φnh −

1

2
φn−1
h )

h

· ∇Bn+ 1
2

h , ψ
n+ 1

2

h )

+G1(u,B, n, φ
n+ 1

2

h ) +G2(u,B, n, ψ
n+ 1

2

h ). (7.1.29)

We now bound the RHS terms in (7.1.29) individually. For the first two terms we use Cauchy-

Schwarz and Young’s inequalities

Re−1(∇ηn+ 1
2

u ,∇φn+ 1
2

h ) ≤ Re−1

14
‖∇φn+ 1

2

h ‖2 + CRe−1‖∇ηn+ 1
2

u ‖2, and (7.1.30)

sRe−1
m (∇ηn+ 1

2

B ,∇ψn+ 1
2

h ) ≤ sRe−1
m

14
‖∇ψn+ 1

2

h ‖2 + CRe−1
m ‖∇η

n+ 1
2

B ‖2. (7.1.31)
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We bound the first two nonlinear terms in (7.1.29) using Lemma 2.0.3, and standard inequalities

|Dh
N (

3

2
un − 1

2
un−1)

h

· ∇ηn+ 1
2

u , φ
n+ 1

2

h )|

≤ C‖Dh
N (

3

2
un − 1

2
un−1)

h

‖ 1
2 ‖∇Dh

N (
3

2
un − 1

2
un−1)

h

‖ 1
2 ‖∇ηn+ 1

2
u ‖‖∇φn+ 1

2

h ‖

≤ Re−1

14
‖∇φn+ 1

2

h ‖2 + CRe‖3

2
un − 1

2
un−1‖‖∇(

3

2
un − 1

2
un−1)‖‖∇ηn+ 1

2
u ‖2, (7.1.32)

|(Dh
N (

3

2
ηnu −

1

2
ηn−1
u )

h

· ∇un+ 1
2

h , φ
n+ 1

2

h )|

≤ C‖∇Dh
N (

3

2
ηnu −

1

2
ηn−1
u )

h

‖‖∇un+ 1
2

h ‖‖φn+ 1
2

h ‖

≤ Re−1

14
‖∇φn+ 1

2

h ‖2 + CRe‖∇un+ 1
2

h ‖2‖∇ηnu‖2 + CRe‖∇un+ 1
2

h ‖2‖∇ηn−1
u ‖2. (7.1.33)

The third and fourth nonlinear terms in (7.1.29) are bounded as follows:

|(Dh
N (

3

2
φnh −

1

2
φn−1
h )

h

· ∇un+ 1
2

h , φ
n+ 1

2

h )|

≤ |(Dh
N

3

2
φnh

h

· ∇un+ 1
2

h , φ
n+ 1

2

h )|+ |(Dh
N

1

2
φn−1
h

h

· ∇un+ 1
2

h , φ
n+ 1

2

h )|

≤ C‖φnh‖‖∇u
n+ 1

2

h ‖∞‖∇φ
n+ 1

2

h ‖+ C‖φn−1
h ‖‖∇un+ 1

2

h ‖∞‖∇φ
n+ 1

2

h ‖

≤ Re−1

14
‖∇φn+ 1

2

h ‖2 + CRe‖∇un+ 1
2

h ‖2∞‖(‖φnh‖2 + ‖φn−1
h ‖2), (7.1.34)

s|(Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

· ∇ηn+ 1
2

B , φ
n+ 1

2

h )|

≤ Cs‖∇(Dh
N (

3

2
Bnh −

1

2
Bn−1
h )

h

‖‖∇ηn+ 1
2

B ‖‖∇φn+ 1
2

h ‖

≤ Re−1

14
‖∇φn+ 1

2

h ‖2 + CRe‖∇ηn+ 1
2

B ‖2(‖∇Bnh‖2 + ‖∇Bn−1
h ‖2). (7.1.35)

The fifth and sixth nonlinear terms in (7.1.29) are bounded as follows

s|(Dh
N (

3

2
ηnB −

1

2
ηn−1
B )

h

· ∇Bn+ 1
2 , φ

n+ 1
2

h )|

≤ ‖∇(Dh
N (

3

2
ηnB −

1

2
ηn−1
B )

h

‖‖∇Bn+ 1
2 ‖‖∇φn+ 1

2

h ‖

≤ Re−1

14
‖∇φn+ 1

2

h ‖2 + CRe‖∇Bn+ 1
2 ‖2(‖∇ηnB‖2 + ‖∇ηn−1

B ‖2), (7.1.36)

s|(Dh
N (

3

2
φnh −

1

2
φn−1
h )

h

· ∇Bn+ 1
2 , φ

n+ 1
2

h )|

≤ |(Dh
N

3

2
φnh

h

· ∇Bn+ 1
2 , φ

n+ 1
2

h )|+ |(Dh
N

1

2
φn−1
h

h

· ∇Bn+ 1
2 , φ

n+ 1
2

h )|

≤ C‖φnh‖‖∇Bn+ 1
2 ‖∞‖φ

n+ 1
2

h ‖+ C‖φn−1
h ‖‖∇Bn+ 1

2 ‖∞‖φ
n+ 1

2

h ‖

≤ Re−1

14
‖∇φn+ 1

2

h ‖2 + CRe‖∇Bn+ 1
2 ‖2∞(‖φnh‖2 + ‖φn−1

h ‖2). (7.1.37)
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The six remaining nonlinear terms are bounded similar to the first six nonlinear terms bounded

above. Combining the upper bounds, using regularity of the continuous and discrete solutions, and

grouping like terms gives

1

2∆t
(‖φn+1

h ‖2 − ‖φnh‖2) +
s

2∆t
(‖ψn+1

h ‖2 − ‖ψnh‖2) +
Re−1

2
‖∇φn+ 1

2

h ‖2 +
sRe−1

m

2
‖∇ψn+ 1

2

h ‖2

≤ C(Re+ sRem)(‖φnh‖2 + ‖φn−1
h ‖2) + sCRem(‖ψnh‖2 + ‖ψn−1

h ‖2)

+ C(Re+Rem)(‖∇ηnu‖2 + ‖∇ηn−1
u ‖2) + CRe(‖∇ηnB‖2 + ‖ηn−1

B ‖2)

+ C(Re−1 +Re+ sRem)‖∇ηn+ 1
2

u ‖2 + C(Re+Re−1
m + sRem)‖∇ηn+ 1

2

B ‖2

+ |G1(u,B, n, φ
n+ 1

2

h )|+ |G2(u,B, n, ψ
n+ 1

2

h )| (7.1.38)

It remains to bound the terms in G1(u,B, n, φ
n+ 1

2

h ) and G1(u,B, n, ψ
n+ 1

2

h ). The bounds for G1 and

G2 are derived similarly and so we only write out the details explicitly for G1. The linear terms are

bounded with Cauchy-Schwarz and Young’s inequality as follows:

(f(tn+ 1
2 )− fn+ 1

2 , φ
n+ 1

2

h ) ≤ 1

2
‖φn+ 1

2

h ‖2 +
1

2
‖f(tn+ 1

2 )− fn+ 1
2 ‖2

≤ 1

2
‖φnh‖2 +

1

2
‖φn+1

h ‖2 +
(∆t)3

48

∫ tn+1

tn
‖ftt‖2dt, (7.1.39)

(
un+1 − un

∆t
− ut(tn+ 1

2 ), φ
n+ 1

2

h ) ≤ 1

2
‖φn+ 1

2

h ‖2 +
1

2
‖u

n+1 − un

∆t
− ut(tn+ 1

2 )‖2

≤ 1

2
‖φnh‖2 +

1

2
‖φn+1

h ‖2 +
1

2

(∆t)3

1280

∫ tn+1

tn
‖uttt‖2dt, (7.1.40)

(∇un+ 1
2 −∇u(tn+ 1

2 ),∇φn+ 1
2

h ) ≤ εRe−1‖∇φn+ 1
2

h ‖2 + CRe‖∇un+ 1
2 −∇u(tn+ 1

2 )‖2

≤ εRe−1‖∇φn+ 1
2

h ‖2 + CRe
(∆t)3

48

∫ tn+1

tn
‖∇utt‖2dt.(7.1.41)

To bound the first nonlinear term we add an identically zero term, and rearrange to get

(Dh
N (

3

2
un − 1

2
un−1

h

) · ∇un+ 1
2 , φ

n+ 1
2

h )− (u(tn+ 1
2 ) · ∇u(tn+ 1

2 ), φ
n+ 1

2
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3

2
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2
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h

) · ∇un+ 1
2 , φ

n+ 1
2
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2 )
h

· ∇u(tn+ 1
2 ), φ

n+ 1
2
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h
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2
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2 ) · ∇u(tn+ 1
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2
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N (

3

2
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2
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h
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2−u(tn+ 1
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2

h )+(Dh
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3

2
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2
un−1 − u(tn+ 1
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2
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+ ((Dh
Nu(tn+ 1

2 )
h

− u(tn+ 1
2 )) · ∇u(tn+ 1

2 ), φ
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2

h ). (7.1.42)
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Next we bound the terms in (7.1.42) individually:

(Dh
N (

3

2
un − 1

2
un−1

h

) · ∇(un+ 1
2 − u(tn+ 1

2 )), φ
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2

h )

≤ ‖∇Dh
N (

3

2
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2
un−1

h

)‖‖∇(un+ 1
2 − u(tn+ 1

2 ))‖‖∇φn+ 1
2

h ‖
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2
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2
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∫ tn+1

tn
(‖∇un‖4 + ‖∇un−1‖4 + ‖∇utt‖4)dt
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2
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‖∇utt‖4dt. (7.1.43)
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2

h ‖2 + CRe‖Dh
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≤ εRe−1‖∇φn+ 1
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|A−nu|2k+1). (7.1.45)

The bound on the remaining nonlinear terms in G1 is derived similarly. Specifying ε = 1
28 , substi-
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tuting in the above bounds, and multiplying through by 2∆t gives

(‖φn+1
h ‖2 − ‖φnh‖2) + s(‖ψn+1
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2
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2
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2
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tn
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+ α4N+4‖∆N+1A−(N+1)B‖2 + (α2h2k + h2k+2)(
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. (7.1.46)

Recall that ηnu = (u(tn)− PVhu(tn)) and ηnB = (B(tn)− PVhB(tn)) implies

‖ηnα‖2 ≤ hk+1|un|2k+1 for α = u,B, (7.1.47)

‖∇ηnα‖ ≤ h2k+2|un|2k+1 for α = u,B. (7.1.48)

Summing the terms in (7.1.46) and using the bounds above gives
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2
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+ α4N+4‖∆N+1A−(N+1)u‖22,0 + α4N+4‖∆N+1A−(N+1)B‖22,0

+ (α2h2k + h2k+2)(

N∑
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n=0

‖A−nB‖22,k+1)

)
. (7.1.49)

The proof is finished with an application of Gronwall’s inequality and the triangle inequality.
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Remark 7.1.4. The algorithm has two important features which the error analysis reveals. The first

is that the velocity and magnetic field errors (and convergence rates) are independent of the pressure

error. This follows because the SV element is pointwise divergence free. The second important feature

is as a result of linearizing the scheme there is no restriction on the timestep, which is analogous to

the results in [34, 51].

Remark 7.1.5. The filtering parameter, α, is typically chosen on the order of h. This simplifies

the error estimate to O(∆t2 + hl) where l = min(2(N + 1), k). We note that by choosing N = 1

when k = 3 we maintain third order convergence. However, if we choose N = 0 then we only expect

second order convergence.

7.2 Numerical Experiments

In this section we test the numerical scheme on some benchmark problems. All computations

are done in 2d on a barycenter refinement of a regular mesh (to ensure stability) with ((P 3)2, P 2
disc)

SV elements, and α = O(h).

7.2.1 Convergence Rates

From Theorem 7.1.2, with k = 3 we expect the asymptotic error in Algorithm 7.1.1 to

converge as

‖u− uh‖2,1 + ‖B −Bh‖2,1 = O(∆t2 + h3 + α2N+2).

Thus, for the Leray-α model (i.e. N = 0) we expect the error to be O(∆t2 + h2) because α ≈ h.

However, if we use the Leray-deconvolution model with N = 1 we expect the error to be O(∆t2+h3),

which is optimal using the SV element ((P 3)2, P 2
disc), and a reduction in error over the case where

N is chosen to be 0.

To verify the convergence rates we compute solutions to a problem with known solutions on

a series of refined meshes and timesteps. The test problem is chosen to have solution

u = (1 + 0.01t)

 cos(2πy)

sin(2πx)

 , B = (1− 0.01t)

 sin(2πy)

cos(2πx)

 , P = x+ y.

on the unit square with Re = Rem = 100, s = 1, endtime T = 0.1, and f and ∇× g calculated from

u,B, p and the MHD equations. The meshwidth and timestep are tied together so that when h is

halved, the timestep is divided by 2
√

2 (approximately).
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Table 7.1 shows that we achieve third order convergence when N = 1, while we only achieve

second order convergence when N = 0. This agrees with our analysis. Further, Table 7.1 shows

that on the three finest discretizations the Leray-Deconvolution (N=1) model has an order of mag-

nitude reduction in error compared to the Leray-α (N=0) model with only a modest increase in

runtime (approximately 8% on the finest mesh). This confirms our theory, and demonstrates a clear

advantage of deconvolution.

h ∆t ‖u− uh‖2,1 + ‖B −Bh‖2,1 rate time ‖u− uh‖2,1 + ‖B −Bh‖2,1 rate time
(N=1) (sec) (N=0) (sec)

1
2 T 0.810088 - 1.04 1.131522 -
1
4

T
3 0.167449 2.27 6.97 0.423210 1.42 0.85

1
8

T
8 0.022034 2.93 62.73 0.127370 1.73 6.59

1
16

T
22 0.002504 3.13 668.18 0.034316 1.90 649.19

1
32

T
62 3.0824e-4 3.02 2250.94 0.008680 1.98 2080.84

Table 7.1: Convergence rates for the Leray-deconvolution (N = 1) and the Leray -α (N = 0) models.

7.2.2 Channel Flow over a Step

For our second experiment, we consider a variation of the benchmark problem of flow through

a channel over a step found in [14, 23, 57]. The parameters are specified as follows Re = 500,

Rem = 1, s = 0.05, and endtime T = 50. The initial conditions are u0 = 0 and B0 = 0. For

the velocity we assume constant inflow and constant outflow on the left and right boundaries, and

all other boundaries are prescribed no-slip conditions. The magnetic field is set to be 1 in the y

direction and 0 in the x direction on all boundaries. Figure 7.1 shows the domain and boundary

conditions.

Figure 7.1: The domain and boundary conditions for channel flow problem.
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It is known from [14, 23, 57] that the correct physical behavior is for an eddy to form behind

the step. To verify this we compute a DNS of MHD flow on a mesh which gave 102,650 degrees of

freedom and a timestep ∆t = 0.01. Figure 7.2 shows the correct behavior of the simulation

Figure 7.2: The ‘true’ solution.

The goal of a model is to provide more accurate (at least in an averaging sense) simulations

than DNS on coarse spacial and temporal discritizations. Thus, to test our model we now compare

the MHD Leray-deconvolution model and DNS of MHD on a mesh which gave 8,666 degrees of

freedom and timestep ∆t = 0.1. The model parameters were chosen to be N = 1 and α = 0.08(≈ h).

The results are shown in Figure 7.3 as velocity streamlines over speed contours. The coarse-mesh

DNS failed to provide a plausible solution due to numerical oscillations. The Leray-deconvolution

model does stretch the recirculation region but it has captured the recirculation behind the step

and the solution still maintains smooth velocity contours. This demonstrates the effectiveness of the

model at capturing (qualitative) long term behavior of MHD flows on coarse discretizations.

7.2.3 Orszag-Tang Vortex Problem

We conclude the section by repeating an experiment done by J.-G Liu and W. Wang in [49].

Consider the ideal 2d MHD equations with Re = Rem =∞, f = ∇× g = 0, s = 1, and compute on

the 2π periodic box with initial conditions

u0 =

 − sin(y + 2.0)

sin(x+ 1.4)

 , B0 =

 −1
3 sin(y + 6.2)

2
3 sin(2x+ 2.3)

 .

The computations were done on a mesh which gives a total of 129,410 degrees of freedom, and

parameters were specified as follows: N = 1, α = 1
90 , ∆t = 0.1, and T = 2.7. The configuration is
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Figure 7.3: Top: MHD Leray-deconvolution, Bottom: DNS of MHD, at T = 50 on mesh giving
8,666 dof.
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known to develop singularity-like structures known as current sheets. Figure 7.4 shows the current

sheets at time T and we observe that, although only marginally resolved, the plot agrees qualitatively

with the those in the literature [49, 20, 10]. However, we find our solution with significantly less

degrees of freedom and a larger timestep than [49, 20, 10].

Figure 7.4: Current sheets found with Leray−α deconvolution (N=1) at t=2.7.

Since this is an ideal MHD problem, we expect energy and cross helicity to remain constant

throughout the simulation, by Remark 7.1.3. Figure 7.5 shows that these physical entities remain

constant for the duration of the simulation, verifying the model conserves energy and cross helicity.
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Figure 7.5: Energy and Cross helicity versus time for Orszat-Tang Vortex problem; they are con-
served.
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Chapter 8

Conclusions

Chapter 3 extended the energy and helicity conserving scheme of [64] to include homogenous

Dirichlet boundary conditions. The adverse effect of Bernoulli pressure, which can be the dominant

source of error in finite element computations, was nullified by the use of grad-div type stabilizations.

We proposed and analyzed an altered grad-div stabilization and found that it is more physically

accurate than the traditional grad-div stabilization term because the energy balance is not altered.

The modified stabilization term also appears to stabilize similarly to the usual grad-div stabilization.

Finally, we provided a numerical experiment that showed the advantage of the energy and helicity

conserving scheme as well as the altered grad-div stabilization term.

In Chapter 4 we studied a finite element scheme for the 3d NSE which we proved globally

conserved energy and helicity. We demonstrated an efficient way to compute solutions by removing

the pressure space. We provided numerical experiments which show optimal convergence rates, and

correct behavior for the benchmark problem of 3d channel flow over a forward-backward facing step.

Chapter 5 shows that under assumptions A1-A4 grad-div stabilized TH solutions to in-

compressible Stokes type problems converge to their respective SV solutions with rate γ−1. This

connection demonstrates that TH elements can provide excellent mass conservation when the grad-

div stabilization term is large and a setting where the use of a large grad-div stabilization parameter

is stable.

In Chapter 6 we studied a finite element method for the NS-ω model, which improved accu-

racy by using van Cittert approximate deconvolution and the SV element. We performed a complete

numerical analysis of the method, and found the SV element improved accuracy by providing point-

wise mass conservation as well as completely eliminating the dependence of the velocity error on the

Bernoulli pressure error. We also provided numerical experiments that demonstrated the effective-
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ness of the scheme. However, as the model is currently understood the literature suggests that the

Leray-deconvolution and NS-α models are superior.

Chapter 7 provides an analytic study of the continuous Leray-deconvolution model for the

incompressible MHD equations. The model is well-posed and conserves two fundamentally important

physical quantities in MHD flows, namely energy and cross helicity. Further, solutions to a specific

model converge (modulo a subsequence) to a solution of the MHD when N →∞ (and α > 0 is fixed)

and when α→ 0 (and 0 ≤ N <∞ is fixed). These properties make the models excellent candidates

for simulating complex fluid flows which are described by the incompressible MHD equations.

A numerical scheme was presented for the MHD Leray-deconvolution model. The scheme

was shown to be well-posed, conserve energy as well as cross-helicity, and enforce the constraints

∇ · u = ∇ · B = 0 pointwise. Thus, the numerical scheme provides solutions which are physically

relevant. Additionally, the numerical scheme is computationally efficient. Since the scheme linearized

the velocity and magnetic terms which are filtered and then approximately unfiltered, we were able

to filter independently of the full MHD system. Thus, the runtime did not increase significantly by

using deconvolution. Three experiments were provided that demonstrated the effectiveness of the

scheme.
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