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1. Sparse linear systems in practice

In this course we shall focus on linear systems over finite fields. These systems arise in
many applications including coding theory, cryptography, and symbolic computation where
exact arithmetic is desirable.

Some of the methods that we shall discuss are adapted from numerical methods, but when
computing over finite fields we have different issues to deal with. In numerical computation
(over real numbers), numerical stability due to round-off errors is a major concern. In
computation over finite fields there are no round-off errors, but instead there exist self-
orthogonal vectors (called isotropic vectors), which cause a different set of issues in algorithm
design. Our goal in this course is to present the basic theory and the best algorithms known
for solving sparse linear systems over finite fields. Analysis of these algorithms will be a
major concern and we hope to solve some of the problems that are still open at the moment.

In this lecture, we shall delineate various kinds of linear systems that arise in practice and
mention briefly the major issues on which we will focus in this course.

1. Coding Theory. In decoding (n, k, d) Reed-Solomon codes and BCH codes (and many
others indeed), one needs to solve a key equation over finite fields; namely, given a polynomial
s(x) ∈ Fq[x] of degree 2t = d− 1, find polynomials ω(x), σ(x) ∈ Fq[x] such that

ω(x) ≡ s(x)σ(x) (mod xd), (1)

where degω(x) ≤ t − 1, deg σ(x) ≤ t. Here t bounds the number of errors in a received
vector, s(x) is the syndrome polynomial, σ(x) is the error locator polynomial, and ω(x) is
the error evaluator polynomial.

Certainly (1) is a linear system for the coefficients of ω(x) and σ(x). We know from last
semester that it can be solved by applying the extended gcd algorithm to s(x) and xd. It can
also be solved by Berlekamp’s algorithm. These algorithms are equivalent and require O(d2)
operations in Fq. It is natural to ask if it is possible to solve (1) faster. We shall show in this
course that it can be solved in time O(d log d) for special fields Fq and O(d log d loglog d) in
general.

We can write down the equation for the coefficients of σ(x) explicitly. Suppose s(x) =
s0 + s1x+ s2x

2 + · · ·+ sd−1xd−1 is given. Let σ(x) = a0 + a1x+ · · ·+ atxt. Then

s(x)σ(x) = · · ·+
d−1∑
k=t

(
t∑
i=0

sk−iai

)
xk + xd(· · · ).
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Since degw(x) ≤ t− 1, equation (1) implies that

t∑
i=0

sk−iai = 0, t ≤ k ≤ 2t = d− 1,

that is 

s0 s1 . . . st
s1 s2 . . . st+1
...

...
. . .

...
st st+1 . . . s2t





at
at−1
...
a0


 = 0. (2)

The matrix in (2) is called a Hankel matrix. Solving (2) and (1) is essentially equivalent.

Computing the syndrome polynomial s(x) is also equivalent to solving a linear system. In
decoding cyclic codes, s(x) is computed as the remainder of a polynomial r(x) (corresponds
to a received vector) by a fixed polynomial h(x) (which defines the code), i.e.

r(x) = q(x) · h(x) + s(x), (3)

where deg r(x) = n− 1, deg q(x) = k − 1, deg h(x) = n− k and deg s(x) ≤ n− k − 1.

The long division algorithm finds s(x) in time O(k(n−k)). We ask for more: is it possible
to compute the remainder s(x) in time O(n log n)?

Gao recently discovered a new algorithm for decoding RS codes. This algorithm has three
steps. In one step it is desirable to find q(x) in (3), where the polynomials involved have
different degrees and h(x) typically has a small degree (bounded by the number of errors).
Another step is similar to (1):

ω(x) ≡ s(x)σ(x) (mod f(x)), (4)

where f(x) is fixed with degree n (e.g. f(x) = xq − x if n = q), s(x) is given with deg s(x) ≤
n− 1, and ω(x) and σ(x) are unknown with degω(x) ≤ k+ t− 1, and deg σ(x) ≤ t. How to
solve (4) in time O(n log n)?

The remaining step (which is the first step of the algorithm) is to compute s(x). Suppose
that a1, . . . , an ∈ Fq are fixed and let (b1, . . . , bn) ∈ Fqn be any received vector. Then s(x) is
the unique polynomial in Fq[x] such that

s(ai) = bi, 1 ≤ i ≤ n. (5)

The problem of finding s(x) is called interpolation or inverse Fourier transform. How fast
can one interpolate? We shall show how to solve this problem in time O(n log n) for some
special cases.

The problems (1)-(5) are not just important in coding theory, but fundamental by them-
selves, since fast algorithms for division, gcd and interpolation are basic procedures in many
applications.
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2. Cryptography. Many public-key cryptosystems are based on two hard problems in
number theory, namely, factoring integers and computing discrete logs over finite fields. The
fastest algorithms known for solving these problems are based in index calculus methods using
number field sieve or function field sieve. The basic idea is to first find a large collection of
relations (on elements of a factor base) and then combine them to obtain factors or discrete
logs. The last step amounts to solving a large linear system over finite fields.

For factoring integers, the linear system is of the form

Ax ≡ 0 (mod 2), (6)

where A is an n×m matrix with entries 0 or 1, and m > n. Each column of A corresponds
to a relation (of elements in a factor base) and it is desirable to find one or several nonzero
solutions x.

The matrix A in (6) is extremely sparse. For example, in August 1999, RSA-155 (an
integer with 155 digits) was successfully factored by an international team of researchers.
For the matix A involved,

n = 6, 699, 191,

m = 6, 711, 336

and on average each row of A has only 63 nonzero entries. Solving (6) via Gauss elimination
requires O(n3) bit operations and storage of O(n2) bits. For n = 6, 000, 000, storing n2 bits
requires more than 4000 GB of memory, which is out of the capacity of most, if not all,
existing computers. How did they solve the system?

In computing discrete logarithm, the linear system to be solved is of the form

Ax ≡ b (mod r), (7)

where r is a large prime, A is an n×m matrix with integral entries and b is a nonzero vector.
Here A is typically sparse, n > m and the solution is likely to be unique.

In the US Digital Signature Standard (DSS) r is about 2160, and in other public-key
cryptosystems r is typically about 21,000. The matrix A will also have millions of columns
and rows. How to solve such systems fast?

3. Factoring polynomials. Factoring polynomials is a fundamental routine in any com-
puter algebra system (e.g. Maple, Mathematica, Magma, etc). Most efficient algorithms
for factoring polynomials need first to solve a linear system and then use the solutions to
get factors of the polynomial to be factored. Let us mention two methods: Berlekamp’s for
univariate polynomials and Gao’s for bivariate polynomials.

Suppose f ∈ Fq[x], squarefree, of degree n, is given to be factored. Berlekamp’s method
needs to find g(x) ∈ Fq[x] of degree smaller than n such that

g(x)q ≡ g(x) (mod f(x)). (8)
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Since q-th power is a linear operation on the coefficients of g(x), (8) is indeed a linear system
and it is desirable to find a basis for all the solutions (or several random solutions). When
f(x) has high degree, (8) is a large linear system to solve over Fq.

To see the equation from Gao’s PDE method, let f ∈ F[x, y], squarefree, with bidegree
(m,n) (i.e. degree m and n in x and y, respectively). One needs to find polynomials
g, h ∈ F[x, y] such that

∂

∂y

(
g

f

)
=
∂

∂x

(
h

f

)
, (9)

where deg g ≤ (m− 1, n) and deg h ≤ (m,n− 1). The equation (9) can be rewritten as

f ·

(
∂g

∂y
−
∂h

∂x

)
− g ·

∂f

∂y
+ h ·

∂f

∂x
= 0. (10)

It is desirable to find a basis for all the solutions g (or several random solutions g). Again,
how to solve (10) fast?

4. Solving nonlinear systems. Finding solutions of a system of nonlinear polynomial
equations over a given field is fundamental in symbolic and scientific computations. Appli-
cations include computer algebra, computer graphics, computer vision, geometric and solid
modeling, economics and optimization, molecular biology, robotics, etc. This is an extremely
active area of current research.

A system of nonlinear polynomial equations can also be turned into a linear system, usually
sparse. We illustrate by a few examples.

Let F be any field and f = xn +
∑n−1
i=0 aix

i ∈ F[x]. We want to find the zeros of f(x) in
F. Let

A =



0 1

0 1
. . . . . .

0 1
−a0 −a1 . . . −an−2 −an−1


 ,

the companion matrix of f . Then λ ∈ F is a zero of f iff

A · υ = λ · υ (11)

for some nonzero vector υ ∈ Fn, that is, λ is an eigenvalue of A (that lies in F).

More generally, let f1, . . . , fm ∈ F[x1, . . . , xn] form a Gröbner basis for the ideal I =
〈f1, . . . , fm〉 with a monomial basis B. Suppose the ideal I is radical and has only finitely
many common zeros, say {P1, . . . , Pt} in F. So B is finite and form a basis for the quotient
ring

R = F[x1, . . . , xn]/I.

Let g ∈ R be any element. Then multiplication by g in R defines a linear map:

g : R −→ R
u 7−→ g · u (mod I)
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This map can be computed via the monomial basis B. The eigenvalues of the linear map g are
exactly the values of g at the points P1, . . . , Pt. Finding the common zeros of f is equivalent
to finding the eigenvalues (or eigenvectors) of the linear map g, for various choices of g.

In practice, the given polynomials f1, . . . , fm may not be so nice (in that they may not
form a Gröbner basis). One may first try to construct a Gröbner basis, but this process may
be prohibitively time consuming. In this case, one can use resultant methods to convert a
nonlinear system into a linear system. (Include a nice example here ...)

5. General Model: black box approach. Let V be a vector space of dimension n over a
field F. Let T be a linear operator on V and b ∈ V . The problem is to find x ∈ V such that

Tx = b. (12)

When b = 0 we require x 6= 0.

Typically, we shall think of T as a matrix. In the above applications, T could be given
explicitly as a sparse matrix (as in (6) and (7)) or given implicitly. In the first case, the
matrix-vector product T ·υ can be computed fast in a straightforward way. In other applica-
tions, T may not look sparse (if written out explicitly), but the matrix-vector product T · υ
can also be computed quickly via fast multiplication of polynomials, in this case we also say
that T is sparse. In general, we take the point of view of Kaltofen and Trager (1990), that
is, we simply view T as a black box, or an oracle, that returns the product T ·υ for any given
vector υ. Pictorially, we have

v T v

Figure 1. Black box for T

In a specific application, one has to design this black box, that is, find a fast algorithm for
computing the matrix-vector product T · υ. When solving (12), one is given the black box
but not allowed to “peek inside” the box. The main goal in designing efficient algorithms
for solving (12) is to call the black box as few times as possible and use extra storage (for
the intermediate vectors) as less as possible.


